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Abstract

Expression noise, the variability of the amount of gene product among isogenic cells grown

in identical conditions, originates from the inherent stochasticity of diffusion and binding of

the molecular players involved in transcription and translation. It has been shown that

expression noise is an evolvable trait and that central genes exhibit less noise than periph-

eral genes in gene networks. A possible explanation for this pattern is increased selective

pressure on central genes since they propagate their noise to downstream targets, leading

to noise amplification. To test this hypothesis, we developed a new gene regulatory network

model with inheritable stochastic gene expression and simulated the evolution of gene-

specific expression noise under constraint at the network level. Stabilizing selection was

imposed on the expression level of all genes in the network and rounds of mutation, selec-

tion, replication and recombination were performed. We observed that local network fea-

tures affect both the probability to respond to selection, and the strength of the selective

pressure acting on individual genes. In particular, the reduction of gene-specific expression

noise as a response to stabilizing selection on the gene expression level is higher in genes

with higher centrality metrics. Furthermore, global topological structures such as network

diameter, centralization and average degree affect the average expression variance and

average selective pressure acting on constituent genes. Our results demonstrate that selec-

tion at the network level leads to differential selective pressure at the gene level, and local

and global network characteristics are an essential component of gene-specific expression

noise evolution.

Author summary

“No man is an island, entire of itself. Each is a piece of the continent, a part of the main.”

declares John Donne in his poem For Whom the Bell Tolls, emphasizing that no individual

human is entirely separate from humanity as a whole interconnected system. Organisms

are biological systems constituted of many interacting components that also interact with

each other and the environment. Understanding the evolution of single components such
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as individual cells or genes can only be fully achieved by considering the interactions with

other components. Here, we study the evolution of the cell-to-cell variability of gene

expression, the so-called expression noise. To understand the evolution of gene-specific

expression noise, we develop a model of gene network evolution with selection at the gene

regulatory network level. We find that selection at the gene network level has different

repercussions for individual genes based on their position in the network and that gene

expression noise is more constrained in genes that are central in the network. Further-

more, the topological structure of the background network affects the propagation and

evolvability of gene expression noise. These findings indicate that selection on a given

system results in differential selective pressures at the level of subsystems. Our results

further suggest that selection to mitigate inherent noise plays a role in network and gene

evolution.

Introduction

Living beings are complex systems constituted of many genes that interact with each other and

the environment to create an organism. From prokaryotes with a few hundred essential genes,

to eukaryotes with possibly several thousands, cells require many gene products to work

together to perform housekeeping functions and to replicate. Fine-tuned molecular processes,

generally referred to as gene expression, ensure how, where and when these products are gener-

ated. However, gene expression is an inherently noisy process [1, 2], which involves many

steps where molecules participating in the expression machinery diffuse and bind to target

molecules. Additionally, these molecules are often present in small copy numbers, increasing

the susceptibility of gene expression to stochastic events. Consequently, there is a variation in

gene expression levels among cells, even if they are isogenic and grown in a homogeneous

environment, and this inevitable variation has been termed gene expression noise. Organisms

have to express hundreds of genes, each one of which is noisy—raising the question of how

they evolved to cope with this inevitable noise.

The expression noise level of a particular gene may be decomposed into two components,

called extrinsic and intrinsic. Extrinsic noise affects all genes equally and results from the shar-

ing of key molecules, such as RNA polymerases and ribosomes, by all genes in the expression

process, as well as, for instance, differences in cell size and phase in the cell cycle. Intrinsic

noise is gene-specific and results from different chromatin states, cis-regulatory elements and

kinetic parameters of transcription and translation of each gene [3]. Minor sequence muta-

tions can have a significant effect on the level of expression noise. For example, a small number

of single-nucleotide changes in a transcription factor binding site were reported to have a large

effect on the expression noise level [4]. Since (i) there is variation in the level of intrinsic noise

of genes, and (ii) intrinsic noise is genetically determined—and, therefore, heritable—gene

expression noise can be shaped by natural selection.

Evidence of selection on expression noise was first seen in the fact that dosage-sensitive

genes [5] and essential genes exhibit lower levels of expression noise [6, 7]. Intrinsic noise was

also reported to correlate with the strength of selection acting on the encoded protein. Namely,

proteins with a lower ratio of non-synonymous over synonymous substitution rate (Ka/Ks)

have a lower level of expression noise [8]. Changes in the expression noise of a single gene may

be either beneficial or deleterious, depending on how far its mean expression is from the opti-

mal expression level [9]. Expression noise is deleterious if the mean expression level is close to

the optimal, as higher variation, in this case, generates a larger number of less fit individuals,

PLOS COMPUTATIONAL BIOLOGY Evolution of gene expression noise in model gene regulatory networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010982 April 20, 2023 2 / 23

zenodo.6939845, together with the code necessary

to generate all raw simulation files.

Funding: NP is funded by the International Max

Planck Research School (IMPRS) for Evolutionary

Biology. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1010982
https://doi.org/10.5281/zenodo.6939845


reducing the population fitness. Conversely, expression noise can be beneficial if the mean

expression level is far from the optimum, as noisy genes are more likely to generate cells with

an expression level closer to the optimum. Noisy gene expression can thus be part of a bet-

hedging strategy and was observed in genes involved in immune and environmental response

[10–13]. The fitness cost of changes in the level of expression noise in the fitness landscapes of

� 30 yeast genes have been shown to be on the same order as fitness costs of changes in mean

expression level [14]. Since the fitness effect of different levels of expression noise can be as

detrimental as different mean expression levels, which are thought to be extensively under

selection [15], it can be assumed that expression noise is extensively under selection genome-

wide. Prevalent selection on expression noise has been demonstrated in naturally segregating

promoter variants of E. coli [16].

The phenotype (and, therefore, the fitness) of an organism depends on the interaction of

many genes. As a result, genes do not evolve independently, and the selective pressure acting

on a gene’s intrinsic noise depends on its interactions with other genes. Understanding the evo-

lution of gene expression noise requires accounting for such gene-to-gene interactions, com-

monly depicted by a gene network. The propagation of noise from gene to gene in the network

was established both theoretically and experimentally [17, 18]. Genes with many connections

propagate their noise to a more substantial extent than genes with fewer connections and,

therefore, contribute more to the global noise levels of the network. Gene networks are robust

to variation in the expression level of their system components to some degree, but at a critical

point the global noise of the network becomes too high and leads to network collapse. Selection

against noise at the network level was, therefore, hypothesized to result in stronger constraints

on the intrinsic noise of highly connected genes [8]. Moreover, the topological structure of the

network has been shown to affect the pattern of noise propagation [19], suggesting that the

topology of the network might impose additional selective constraints on the constituent genes.

Here, we test the hypothesis that expression noise of highly connected genes in gene net-

works is under stronger selective pressure than expression noise in peripheral genes using an

in silico evolutionary experiment. We introduce a new gene regulatory network evolution

model, which includes an evolvable component of stochastic gene expression, and use it to

evolve thousands of network topology samples over 10,000 generations. These simulations

showed that highly connected genes have a more constrained intrinsic expression noise. They

further revealed that not all genes might evolve in response to network-level selection, and the

probability that they do so depends on local network properties. Lastly, the average selective

pressure acting on genes in a network is affected by topological features such as network diam-

eter, centralization and average degree.

Materials and methods

We introduce a new gene regulatory network model that incorporates intrinsic expression

noise. We then use this model within a forward simulation framework to simulate the evolu-

tion of populations of networks with mutable levels of intrinsic expression noise. These simu-

lations allow us to study how the selective pressure acting on expression noise varies within the

regulatory network.

A gene regulatory network model with stochastic gene expression

To investigate the evolution of stochastic gene expression in gene regulatory networks, we

first extend Wagner’s gene network model [20] to integrate gene-specific expression noise.

We model a network of n genes (n = 40 in this study) defined by a regulatory matrix W =

(wij)1�i�n, 1�j�n, and a vector of intrinsic, gene-specific noise fZinti g1�i�n. Each element wij of
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the regulatory matrix W defines the regulatory effect of gene j on gene i. The value of wij is a

real number and is referred to as regulatory strength of gene j on gene i. In case wij> 0, gene j
is an activator of gene i and increases its expression level. Conversely, when wij< 0, gene j is a

repressor of gene i and decreases its expression level. Lastly, if wij = 0, gene i is not regulated

by gene j and gene j has no effect on expression level of gene i. Two genes i and j are connected

by an edge in the network if at least one of wij and wji is non-null. The intrinsic noise vector

fZinti g1�i�n defines the gene-specific expression noise of each gene in the network. The regula-

tory matrix and the intrinsic noise vector together constitute a unique genotype in this model-

ing framework (Fig 1A).

The phenotype (the expression level of each gene) in the model is represented by a state vec-

tor {Si}1�i�n = {s1, s2, . . ., sn}, which describes the expression level of each gene. The state vector

at t0 is set to an arbitrary basal expression level value (fS0
i g1�i�n ¼ fSbasali g1�i�n ¼ f20; . . . ; 20g

Fig 1. The evolution of gene-specific expression noise was simulated using populations of model gene regulatory networks with

mutable levels of gene-specific expression noise under selective and non-selective conditions. A—Gene regulatory network

model. The genotype consists of the intrinsic noise vector ηint and regulatory matrix W. The intrinsic noise vector defines the gene-

specific expression variance of each gene in the network. The regulatory matrix defines the regulatory interactions in the network.

The genotype is realized into the phenotype using the dynamical equation described in the main text. The phenotype is given by the

state vector S, which represents the expression level of each gene in the network. B—Deterministic (left) and stochastic (right)

realizations of the model. C—Steps of the evolutionary simulation process. Each established network configuration was used as a

founding network for the network populations used in the noise evolution simulation. In every generation, genotypes are realized

and phenotypes (expression levels) are sampled from the last time step. Fitness is calculated from the expression levels. If the

populations are evolved under selection, fitness is calculated as the distance of the expression level of each gene from the optimal

expression level. Genotypes are reproduced based on their relative fitness and mutations in the intrinsic noise vectors are introduced.

Noise genotype vectors are recombined by randomly choosing individuals for recombination and shuffling their noise vectors. The

process is repeated for 10,000 generations. D—Algorithm overview.

https://doi.org/10.1371/journal.pcbi.1010982.g001
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in this study). In every time step t (1� t� Tr, with Tr = 50 in this study), the expression level

of each gene is recomputed. The cumulative effect of all transcription factors in the expression

level of each gene is for simplicity considered to be additive, i.e. we assume there is no coopera-

tive or competitive binding of transcription factors to transcription factor binding sites. This

assumption removes the small degree of non-linearity in the response of the regulated gene to

transcription factor concentrations, which is present in real transcription factor regulation

dynamics. The activation rate ai(t) is defined as the sum of all effects the regulators of gene i
have on its expression level at time step t:

aiðtÞ ¼
Xn

j¼1

wij � sjðtÞ; ð1Þ

in which case the dynamic equation for the expression level of each gene in the following time

step is:

siðt þ 1Þ � N ðsbasali þ aiðtÞ; Zinti Þ: ð2Þ

In every time step the expression level of a gene is drawn from a random distribution. We

implemented a simple Gaussian noise, where the mean of the normal distribution equals the

sum of basal expression level (sbasali ) and activation rate (ai(t)), and the variance equals the gene

noise genotype (Zinti ). If the expression level value drawn from the normal distribution is below

the minimal (smin = 0) or above the maximal expression level (smax = 100), it is set to the mini-

mal or maximal expression level, respectively. We note that the shape and variance of the dis-

tribution is constant in realization time in our model, but that the expression levels of each

individual is the product of the trajectory of the expression levels during the realization pro-

cess, during which expression levels can exhibit phenotypic switching between stable states.

Consequently, there can be a non-normal expression level distribution of a certain gene in the

clonal population, even though the expression levels in each time step are drawn from a nor-

mal distribution.

The expression levels of all genes are synchronously updated in each time step. The steady

state expression levels are invariant to whether the expression levels of each gene are updated

synchronously or asynchronously (S1 Text). Similarly, mean expression level, expression vari-

ance, CV, noise and Fano factor are invariant to the updating mode (S1 Text). The model may

be realized as stochastic or deterministic, depending on the noise parameter values (Fig 1B).

The deterministic realization has been used to benchmark the model and to set up the mean

expression levels for the starting populations, and the stochastic realization has been used in

the main bulk of the simulations, in which intrinsic noise is evolved.

Forward-in-time simulation of expression noise evolution

To investigate how gene-specific expression noise of constituent genes responds to stabilizing

selection at the network level, we used the newly introduced model to perform forward-in-

time evolutionary simulations in which we allow the gene-specific noise levels to mutate. An in
silico evolutionary process consisting of rounds of mutation, selection, recombination and rep-

lication events of a population of N (N = 1, 000 in this study) individuals was performed for

T (T = 10, 000) generations (Fig 1C).

We first generated network topologies that would serve as the founding network for the

populations in our simulations. We generated 2,000 random (Erdős–Rényi model) network

topologies of 40 nodes with regulatory strength values drawn from a uniform distribution

Uð� 3; 3Þ. The network density was d = 0.05. Only connected network graphs were used,

meaning there is only one component and there are no disconnected subgraphs.
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Autoregulation is not present, because it affects gene-specific noise levels and would be a con-

founding factor in the analysis. In order to assess the effect of the topology structure on the

evolution of expression noise, we also generated an additional 1,000 scale-free (Barabási–

Albert model) and 1,000 small-world (Watts–Strogatz model) network topologies with the

same size and density. Both random and small-world networks are characterized by a Poisson

degree distribution and short mean shortest path length, but random networks have a low

clustering coefficient, while small-world networks have a high clustering coefficient. Scale-free

networks are characterized by a degree distribution that follows a power law. Real-world net-

works exhibit degree distributions similar to power-law distributions, high clustering and

short path lengths. As such, real-world networks have features of both scale-free and small-

world networks [21].

In the simulation of expression noise evolution the regulatory interactions were immutable

and the values of the noise genotype vectors were allowed to mutate. Stabilizing selection, the

selection scenario in which individuals with extreme phenotypic values have a lower fitness,

was imposed on all constituent genes by setting the value of optimal expression level as the

mean equilibrium expression level of each gene. The fitness F(s) of a phenotype s was calcu-

lated as in Laarits et al. [22], where fitness is defined as the distance from the optimal expres-

sion state vector fsopti g1�i�n, weighted by the fitness contribution given by {ρi}1�i�n:

FðsÞ ¼ e
�
Pn

i¼1

jsopti � sij=nri ð3Þ

The fitness contribution parameters {ρi}1�i�n define the contribution of each gene to the fit-

ness of the phenotype, i.e. it is a scaling factor of the decrease of fitness as a function of the dis-

tance of the expression level from the optimal expression level for each gene. In this study, the

strength of the imposed selective pressure is set to be identical for all constituent genes (8i ρi =

1). The assumption of all genes having identical fitness contribution is biologically unrealistic,

so we have also performed simulations in which we impose unequal fitness contributions

among genes in the same network. We found consistent conclusions (S5 Text), and, for sim-

plicity, we report the results with equal fitness contributions here. Since the fitness contribu-

tion of all genes is identical, any differences in the evolutionary outcome we observe after

removing the effect of drift will be due to gene differences in their network interactions. Indi-

viduals were reproduced into the next generation with a probability equal to their relative

phenotype fitness. The fitness of all phenotypes in populations evolved under non-selective

conditions was set to an equal constant value, regardless of gene expression levels. Mutations

were introduced at a rate μη (μη = 0.01) per gene per replication event. The values for noise

genotype mutations were drawn from a normal distribution N ð100; 40Þ. There is no experi-

mental evidence for the shape of the distribution of the expression noise and regulatory

strength mutations. We chose a normal distribution because: 1) it defines equally frequent

beneficial and deleterious mutations and 2) most mutations would have a small effect, which

reflects the characteristic of many studied distributions of fitness effects in model organisms.

Recombination was implemented by choosing a random offspring individual at a rate r
(r = 0.05) and introducing a random break point in the linear genome. The genotype values in

the genome segment defined by the break point were then exchanged with another randomly

chosen individual from the offspring population. A constant population size N (N = 1, 000)

was maintained. To account for the effect of genetic drift, the noise evolution simulations of

each founding network population were replicated 10 times under selection and 10 times

under neutrality.
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We found that the expression level of most genes in networks with random configurations

converge to either smin or smax under a deterministic realization. The measurement of vari-

ance of genes that are either not expressed at all or expressed at the maximal level would be

impaired since their expression range is constrained by the lower and upper expression

level boundary. Since the study of expression variance is our main focus, we added a network

establishment step before the noise evolution simulations, in which we subject the network

regulatory matrix to mutation and selection for intermediate expression levels. During the

network establishment step networks are realized deterministically, i.e. the intrinsic noise

genotype of all genes is 0. Networks with intermediate steady state expression levels were

established through the evolutionary process by imposing a target expression level fsopti g1�i�n

(fsopti g1�i�n ¼ f
smax

2
; . . . ;

smax
2
g) for all genes and allowing the strength of regulatory interac-

tions to mutate. Mutations were introduced at a rate μw (μw = 0.1) in non-zero entries in

the regulatory matrix, preserving the network topology structure (Erdős–Rényi, Barabási–

Albert, or Watts–Strogatz model). The values for regulatory strength mutations were drawn

from a normal distribution N ð0; 2Þ. Recombination was not implemented at this stage. Fit-

ness of each individual was computed as the distance of the phenotype to the optimal expres-

sion state vector using Eq 1. Individuals were reproduced with a probability equal to the

relative fitness and the population size kept constant. Network regulatory configurations in

which the expression level of all genes would not converge to a fixed point and would oscil-

late were discarded, as in previous studies [22]. Oscillating gene expression level patterns

create population-level heterogeneity generated by the system oscillations and not by sto-

chastic gene expression. Since we are studying the evolution of gene-specific expression

noise, expression noise generated by oscillations would be a confounding factor in our analy-

sis. We note, however, that oscillatory networks can be frequent in simulations [23] and

biological systems [24], and the role of expression noise in their behavior is an interesting

perspective for follow-up studies. Expression level dynamics were termed oscillating if the

sum of the differences between expression level in the last time step and previous τ time

steps (τ = 10) was higher than � (� = 10−6). A stable, i.e. non-oscillating, expression level

dynamics satisfied the following criterion [22]:

FðSðtÞÞ ¼
1

t

Xt

y¼t� t

DðSðyÞ; SðtÞÞ < � ð4Þ

where D is the distance between two vectors DðS1; S2Þ ¼
Pn

i¼1

jS1
i � S2

i j=n.

The network establishment process consisting of rounds of mutation, selection and repro-

duction of a population of N (N = 1, 000) individuals was performed for T (T = 10, 000) gener-

ations, for each network topology. At the end of the network establishment process, 68%

(54333/80000) of genes had intermediate expression levels (S1 Text). The reason why a minor-

ity of the genes do not reach close to optimum expression levels could be potential network

configuration constraints or a non-extensive optimization/fitting algorithm. Genes that had an

expression level of 0 or smax were filtered out from the dataset used in the final analysis. The

network regulatory configuration with the highest fitness was chosen from the evolved popula-

tion and this network configuration was used to generate the starting population for the noise

evolution simulations.

The gene network model and evolutionary simulations were implemented in C++ and

the source code is available at https://gitlab.gwdg.de/molsysevol/supplementarydata_

expressionnoise/cpp.
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Analysis of simulation results: Expression noise and network centrality

measures

The evolutionary outcomes (i.e. the change of phenotypes and genotypes) were measured as

change of expression noise and selective pressure for each network, respectively. Expression

noise in the first and last generation in each evolved population was measured as the variance

of the population expression level states for each gene. The change of expression noise (pheno-

typic evolution) between the first and last generation was measured as the relative change of

expression noise, calculated as the difference of expression variance between the first and last

generation divided by their sum (s2
gen1
� s2

gen10kÞ=ðs
2
gen1
þ s2

gen10k).

The selective pressure (genotypic evolution) acting on each gene was measured as the aver-

age change of noise genotype in every second generation relative to the starting level (Fig 1C).

To compare the effect of node centrality on the selective pressure acting on constituent genes,

we computed node-level network centrality measures for each node in the networks. We

focused our analysis on two local network centrality measures, node instrength and out-

strength, but over 30 network centrality measures were analyzed (S2 Text). Instrength of node

i is measure of the strength and number of in-going links, i.e. how strongly a gene is being reg-

ulated:

InstrengthðiÞ ¼
Xn

j

jwijj: ð5Þ

Conversely, the outstrength of node j is a measure of the strength and number of outgoing

links, i.e. how strongly a gene regulates other genes downstream:

OutstrengthðjÞ ¼
Xn

i

jwijj: ð6Þ

Further, we computed global graph-level metrics, such as mean graph distance and performed

a principal component analysis to reduce the dimensionality (S2 Text). The results were ana-

lysed in R 3.6.3 [25]. Network analyses were performed using the igraph 1.2.4.2 [26]

and statnet 2019.6 [27] packages. Principal component analysis was performed using

the ade4 1.7.15 [28] package.

Analysis of simulation results: Linear modeling

We fitted linear mixed-effects models using network centrality measures as fixed effect vari-

ables and the network topology sample as a random effect variable, allowing for control of

intra-network correlation in the response variable. We tested different transformations of the

response and explanatory variables in order to improve linearity, and variance structures to

account for heteroskedasticity of the residuals. A model where the residual variance was an

exponential function of the node absolute instrength was shown to provide the best fit accord-

ing to the minimal Akaike’s Information criterion and was used for all subsequent models

(S3 Text). Two types of models were fitted: a logistic regression where the response variable

was set to whether a gene answered to selection or not, and standard regressions that used

expression variance, relative change of expression variance or selective pressure as response

variables. Linear mixed-effect modelling was performed using the nlme 3.1.144 [29]

and lme4 1.1.27.1 [30] packages. Marginal and conditional R2 values were computed

using the MuMIn 1.43.17 [31] package. Network centrality measures used as explanatory

variables in our linear models were correlated (Pearson’s r = −0.17, p-value < 2.2 × 10−16,

S2 Text), so we computed the variance inflation factor (VIF) using the car 3.0.11 [32]
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package. The VIF of all linear models was less than 3; therefore, colinearity was considered to

have negligible impact on the inferred statistical significance [33]. To improve homoskedasti-

city of the residuals in the linear models, we also performed each model fit on two filtered data-

sets: one in which genes with zero values of instrength or outstrength were removed, and one

in which only genes with zero values of instrength or outstrength were kept. The same pattern

of effects and significance is observed in the filtered as in the main dataset, so we included the

results of the complete dataset in the main text and reported the results of the reduced dataset

in the supplementary information (S6 Text).

Finally, since in some cases variable transformation, heterogeneous variance modeling and

data filtering did not ensure normality and independence of the residuals, we assessed the

amount of resulting bias in the estimation of p-values using a randomization test, in which we

fitted a selected model on 10,000 permuted datasets. We chose the model of relative noise

change (S3 Text), as the corresponding residuals were significantly departing normality (Sha-

piro-Wilk test, p-value< 2.2 × 10−16) and independence (Box-Ljung test, p-value = 8.9 × 10−7).

For each permutation, we shuffled the values of the response variable (relative change of vari-

ance) within each network topology, which removes the effect of network metrics on the change

of noise, but preserves the distributions of each metric per network, as well as putative colinear-

ity between explanatory variables. Using α = 0.05 as a significance cutoff value, we found a false

discovery rate (FDR) of 6.0% for the effect of instrength and and 6.7% for the effect of out-

strength. While these values are above the expected 5%, the FDR inflation was found to be rela-

tively low and we concluded that the non-normality of residuals did not affect our conclusions.

Analysis of simulation results: Information-based metrics

Generalized linear mixed-effects models make several assumptions that might be violated by

the data in some cases. Namely, they assume a normal distribution and homoskedasticity of

Pearson’s residuals, and a normal distribution of random effects. To further validate our con-

clusions, we computed the mutual information (MI) between variables, which does not have

any prior assumptions. We calculated mutual information between the expression noise and

centrality metrics using the infotheo 1.2.0 [34] package. Monte Carlo permutation tests

with 10,000 permutations were used to compute p-values for the significance of the mutual

information between each pair of tested variables.

Results

We investigate how selection at the gene network level may lead to the evolution of differential

gene-specific expression noise, as observed in biological systems. To do so, we introduce a new

gene regulatory model with stochastic gene expression, which extends Wagner’s model [20] by

adding node-specific intrinsic noise parameters (Fig 1A and 1B). In this framework, the phe-

notype is represented by the expression level of each gene, and is the realization of a random

distribution determined by the genotype. The fitness of an individual is further determined by

its distance to an optimal phenotype, therefore, stabilizing selection is implemented as acting

on the expression level. We used this model to simulate the evolution of populations of gene

regulatory networks with mutable levels of gene-specific expression noise under selective and

non-selective conditions (Fig 1C and 1D), and assessed how node properties affect the evolu-

tion of intrinsic noise.

Expression noise propagates along the regulatory network

We first investigated how noise propagated in the model gene regulatory networks. It was

shown that noise is additive in biological networks and, therefore, propagates from regulators
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to regulated genes [17, 18]. To assess whether our model successfully captured this property,

we generated a dataset of 2,000 realized random network topologies, and tested whether gene

expression variance increased with the number of ingoing regulatory links. As expected, we

found that the absolute instrength of a gene had a significant positive effect on gene expression

variance (linear mixed-effects model with coefficient β = 0.28, p-value < 2.2 × 10−16) (Fig 2A),

indicating that noise propagation was captured in our model. Furthermore, the mutual infor-

mation between gene expression variance and absolute instrength was significant (MI = 0.67,

p-value� 10−4, permutation test). High node instrength increases expression noise, in line

with the experimental evidence that the noisiness of promoters increases with the number of

regulatory inputs [35].

We then looked at fitness costs associated with high expression noise in regulators and

regulated genes. In a dataset of 1,000 random network topologies, we assessed the mean fit-

ness of the clonal populations of 1,000 individuals under stabilizing selection on the expres-

sion level. Each gene was imposed 5 different levels of intrinsic noise, while the intrinsic

noise of the rest of the network was kept at 0. We found that increasing the level of expres-

sion noise of a single gene decreased the mean fitness of the network (linear mixed-effects

model with coefficient β = -0.002, p-value < 2.2 × 10−16), as expected. However, the strength

of this effect depended on the gene centrality. The reduction of fitness due to gene-specific

expression noise was significantly, but marginally, affected by instrength (linear model

with coefficient β = 0.004, p-value < 2.2 × 10−16, Fig 2B). The mutual information between

mean fitness of the population and absolute instrength was not significant (MI = 0.22, p-

value = 0.18, permutation test). However, the mean fitness significantly decreased with node

outstrength (linear model with coefficient β = -0.19, p-value < 2.2 × 10−16, Fig 2C). The

mutual information between mean fitness of the population and absolute outstrength was

significant (MI = 0.43, p-value� 10−4, permutation test). Higher fitness cost of expression

noise in gene with high outstrength suggests there is a differential selective pressure acting

Fig 2. Noise propagation is captured by the gene regulatory network model. A—Gene-specific expression variance increases with the absolute

instrength of the node, indicating noise propagation is reflected in the gene regulatory network model. The lines indicate the 25% (lower dashed line),

50% (solid line), and 75% (upper dashed line) fitted quantiles. B, C—Gene-specific expression variance decreases fitness in gene networks under

stabilizing selection on gene expression level. Increasing the level of gene-specific expression noise reduces the mean fitness of the clonal population.

The mean fitness of the population is significantly, but marginally, increased by noise in genes with higher node instrength (B), and significantly

decreased by noise in genes with higher node outstrength (C). Lines represent the smoothed conditional means and grey bands represent the 95%

confidence interval bands. Coefficients, p-values and partial marginal R2 measures are estimated using linear mixed-effects models with expression

variance or mean fitness as the response variable, instrength and outstrength as fixed effect explanatory variables, and the network topology sample as

the random effect explanatory variable. Mutual information (MI) p-values were computed with a permutation test with 10,000 permutations.

https://doi.org/10.1371/journal.pcbi.1010982.g002
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on genes based on their centrality in the gene regulatory network, which we explore in the

next section using an in silico evolutionary experiment.

Gene expression noise is reduced under a stabilizing selection regime

To investigate how gene-specific expression noise responds to stabilizing selection at the net-

work-level, we simulated the evolution of 2,000 random network topologies with and without

selection on the gene expression level. We observed that gene expression variance decreased

throughout evolution under selective conditions (Fig 3A), and the distribution of intrinsic

noise parameters in the population shifted towards lower noise genotype values (Fig 3B), indi-

cating that low-noise alleles conferred a fitness increase to the network. Conversely, gene

expression variance remained constant throughout evolution under neutral conditions, and

the distribution of noise genotypes reflected only the distribution of random mutations. Repli-

cating the simulations for each network topology sample yielded similar reduction of gene

expression variance (Fig 3C) and median noise parameter in the population (Fig 3D). As the

initial networks were at their optimal expression level, the mean expression level did not

change during evolution and was highly correlated between the first and last generations

(Pearson’s r = 0.99, p-value < 2.2 × 10−16, S1 Text), confirming that selection acted only on the

gene expression variance. Population size had a positive effect on the selective pressure acting

on genes, as expected, selection being more efficient in large populations (S1 Text). A popula-

tion size of 1,000 individuals was chosen for the main simulations as the optimal population

size in the trade-off between selecting mutations with small effects and reducing computa-

tional speed.

Next, we investigated how individual nodes within a network respond to selection, based

on their centrality properties.

Evolutionary change in phenotypes: Regulators reduce their expression

noise to a higher degree

We first analysed the phenotype change, i.e. the relative change in gene-specific expression

variance after evolution. The variance of gene expression depends both on the intrinsic noise

Fig 3. Gene-specific expression noise evolves in a model with selection. A—The distribution of expression levels of an example gene throughout

evolution in populations evolved under stabilizing selection on gene expression level and under neutrality. The variance of gene expression level is

reduced under selection, but not under neutrality. B—The distribution of intrinsic noise parameters of an example gene throughout evolution in

populations evolved under selection and under neutrality. The median intrinsic noise parameter skews to lower values under stabilizing selection, but

not under neutrality. C, D—Replicates of the simulations with the same input network and parameters. Replicates have different dynamics, but reach

similar outcomes in terms of expression variance (C) and median intrinsic noise parameter (D) in the evolved populations. The evolution of each

network topology sample was replicated 10 times under selection and 10 times under neutrality.

https://doi.org/10.1371/journal.pcbi.1010982.g003
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of the genes (that is, its genotype in our model) and the number and noise of the genes it is

connected with.

We fitted linear models to assess the impact of the absolute instrength and outstrength

measures on the relative change in expression variance for each node in each network.

Under selection, both absolute instrength and absolute outstrength had a significant nega-

tive effect (linear mixed-effects model with coefficients βinstrength = -0.003, p-value = 2.9 ×
10−10, Fig 4A; βoutstrength = -0.046, p-value < 2.2 × 10−16, Fig 4B), meaning that genes with

more and stronger connections reduced their expression variance to a larger extent than

less connected genes. The effect was notably stronger for outstrength (marginal R2 = 0.15)

than for instrength (marginal R2 = 5.2 × 10−4). Similarly, the mutual information was

significant between the relative change in gene expression variance under selection and

absolute instrength (MI = 0.09, p-value�10−4, permutation test) and absolute outstrength

(MI = 0.14, p-value� 10−4, permutation test). Genes with high outstrength are strong regu-

lators and their reduction of expression variance to a larger extent indicates that high expres-

sion noise is more detrimental in regulators than in regulated genes. Under neutrality,

absolute instrength had a significantly positive effect (linear mixed-effects model with coeffi-

cient β = 8.3 × 10−4, p-value < 2.2 × 10−16, Fig 4C) and absolute outstrength did not have a

significant effect on the relative change in gene expression variance (linear mixed-effects

model with coefficient β = 7.1 × 10−5, p-value = 0.26, Fig 4D). The mutual information was

significant between the relative change in gene expression variance under neutrality and

absolute instrength (MI = 0.03, p-value� 10−4, permutation test) and absolute outstrength

(MI = 0.01, p-value� 10−4, permutation test). These effects are much smaller and of oppo-

site direction than the ones measured in selective conditions, indicating that genetic drift

did not cause the effect of centrality measures on expression variance observed in selected

populations.

Fig 4. Node-level network centrality measures affect the relative change of gene-specific expression variance under network-level selection. For

each gene, the relative change of expression variance before and after evolution (Rel. Δ expr. variance) was averaged over all replicates. A, B—Absolute

instrength (A) and absolute outstrength (B) have a significant negative effect on the relative change in gene expression variance in populations evolved

under selection. A lower value of relative change of expression variance indicates a bigger reduction in expression variance between the first and last

generation and a stronger response to selection. The lines indicate the 25% (lower dashed line), 50% (solid line), and 75% (upper dashed line) fitted

quantiles. C, D—Absolute instrength (C) and absolute outstrength (D) have a significant, but negligible, negative effect on the relative change in gene

expression variance in the populations evolved under neutrality. The dataset consists of 74,443 genes from 2,000 populations with unique 40-gene

random network topology samples, which were independently evolved 10 times under selection and 10 times under neutrality. Coefficients, p-values

and partial marginal R2 measures were estimated using linear mixed-effects models with relative change of gene-specific variance as the response

variable, instrength and outstrength as fixed effect explanatory variables, and the network topology sample as the random effect explanatory variable.

Mutual information (MI) p-values were computed using 10,000 permutations.

https://doi.org/10.1371/journal.pcbi.1010982.g004
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Evolutionary change in genotypes: Regulators are more likely to respond—

And display a stronger response—To selection

To investigate differential selective pressure acting on gene-specific expression noise, we ana-

lysed the change of intrinsic noise parameters in populations of gene regulatory networks

evolved with or without stabilizing selection on the expression level. We measured the selective

pressure acting on individual genes as the average reduction in the intrinsic noise parameter

relative to the beginning of the evolutionary simulation (see Methods). The selective pressure

on genes was found to be close to 0 in neutrally evolving populations, as expected (Fig 5B). In

the presence of selection, however, the distribution of selective pressures was found to be

bimodal (Fig 5A). Therefore, we binned genes in two categories according to whether they

responded to selection (selective pressure> 0.5) or not (selective pressure� 0.5). We then sep-

arately analysed the probability to respond to selection and the strength of the response.

Absolute instrength had a significant and strongly negative effect (logistic regression with

coefficient β = -1.87, p-value < 2.2 × 10−16, Fig 5C) on the probability of a gene to respond to

selection, that is, genes with more and stronger incoming links are less likely to respond to

selection. Absolute outstrength also had a significant effect on the probability of a gene to

respond to selection (logistic regression with coefficient β = -0.08, p-value = 6.7 × 10−7,

Fig 5D). However, this effect was small and was lost when the interaction terms between

instrength and outstrength were included in the model (SI).

For a qualitative analysis of the effect of network centrality on the selective pressure acting

on individual genes, we fitted linear-mixed effects models on the set of genes that responded to

selection, with selective pressure as the response variable. In the genes that responded to selec-

tion from the selected populations, absolute instrength had a significant negative effect (linear

mixed-effects model with coefficient β = -0.04, p-value < 2.2 × 10−16, Fig 5E). Conversely,

absolute outstrength had a significant positive effect (linear mixed-effects model with coeffi-

cient β = 0.03, p-value < 2.2 × 10−16, Fig 5F) on the selective pressure. In the selected popula-

tions, the mutual information was significant between the selective pressure and absolute

instrength (MI = 0.19, p-value� 10−4, permutation test) and absolute outstrength (MI = 0.31,

p-value� 10−4, permutation test). In the neutral populations, neither absolute instrength nor

absolute outstrength had a significant effect (linear mixed-effects model with coefficient

βinstrength = 2.4 × 10−8, p-value = 0.99, Fig 5G; βoutstrength = −1.2 × 10−5, p-value = 0.49, Fig 5H)

on the selective pressure. Similarly, the mutual information was not significant between the

selective pressure and absolute instrength (MI = 0.005, p-value = 0.34, permutation test), nor

absolute outstrength (MI = 0.005, p-value = 0.45, permutation test).

The increased selective pressure in genes with high outstrength (strong regulators) can be

explained by noise propagation to downstream elements. Namely, expression noise in regula-

tors propagates to the genes they regulate, increasing the overall expression noise in the gene

regulatory network. If gene expression levels in the network are under stabilizing selection,

expression noise is deleterious. Therefore, regulator genes experience a comparatively higher

selective pressure to reduce expression noise than regulated genes. In a genome-wide expression

noise screen in Drosophila melanogaster, transcription factors were found to have lower expres-

sion variation [36]. Suppression of expression noise can be attained through negative autoregu-

lation [37–39], whereby a regulator acts as its own repressor. Incidentally, 40% of transcription

factors in E. coli [40] and many eukaryotic transcription factors [41] have negative autoregula-

tion, indicating a wide-spread control of expression noise in natural regulatory networks.

In contrast to regulator genes, we found that regulated genes, i.e. genes with high node

instrength, are less likely to respond to selection and the selective pressure decreases with node

instrength. Since the expression noise of genes is a sum of their intrinsic noise and noise
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propagated from upstream elements, the contribution of intrinsic noise to the total noise of

the gene will be comparatively smaller in strongly regulated genes. The network can thus

respond to selection either by reducing the intrinsic noise of the focal gene, or by reducing the

intrinsic noise of any of the upstream elements, which would reduce propagated noise. As a

result, there is a relaxation of selective pressure in regulated genes, which is distributed on

upstream genes. On the other hand, the same mechanism increases the selective pressure on

upstream genes, i.e. regulators.

Fig 5. Differential selective pressure is acting on genes based on their centrality. A, B—Distributions of the measured selective pressure in selected

(A) and neutral (B) populations. Genes with a selective pressure above 0.5 were categorized as responsive to selection. C, D—High instrength genes are

less likely to respond to selection. Absolute instrength (C) has a strong significant negative effect on the probability of selection response. Absolute

outstrength (D) has a weak significant negative effect on the probability of selection response. E, F—In the subset of genes that responded to selection,

high instrength (E) decreases the selective pressure, while high outstrength (F) increases the selective pressure acting on individual genes. The lines

indicate the 25% (lower dashed line), 50% (solid line), and 75% (upper dashed line) fitted quantiles. G, H—Absolute instrength (G) and outstrength (H)

have no significant effect on the selective pressure in the non-selected populations. The dataset consists of 74,443 genes from 2,000 populations with

unique 40-gene random network topology samples, which were independently evolved 10 times under selection and 10 times under neutrality. The

selective pressure on each gene is calculated as the average normalized reduction of the intrinsic noise parameter during the evolutionary simulation

and summarized as the mean over all replicates in each scenario. Coefficients, p-values and partial marginal R2 measures are estimated using logistic

regression and linear mixed-effects models with selection responsiveness or selective pressure as the response variable, instrength and outstrength as

fixed effect explanatory variables, and the network topology sample as the random effect explanatory variable. Mutual information (MI) p-values were

using 10,000 permutations.

https://doi.org/10.1371/journal.pcbi.1010982.g005
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To check the robustness of our results, we performed the node-level network centrality

analysis on two additional datasets with different topology structures: scale-free (Barabási–

Albert) and small-world (Watts–Strogatz) topology models. We find consistent effects (direc-

tion and significance) of local network centrality metrics on the selective pressure acting on

gene-specific noise across topology models, showing that our findings are robust to the topol-

ogy model used (S4 Text). However, the effect size of network centrality metrics differed

between the topology models, pointing at an effect of the topology model on noise propagation

and the evolution of gene-specific expression noise, which we investigate in the next section.

Global network properties affect the evolvability of expression noise and

selective pressure on constituent genes

Lastly, we analysed how topological structures and graph-level network properties affect the

expression noise response of constituent genes to selection on a joint dataset of random

(Erdős–Rényi), scale-free (Barabási–Albert) and small-world (Watts–Strogatz) network topol-

ogies. Jointly analysing genes from all three topology types with linear models, we observed

statistically significant interactions between instrength and outstrength and network topology

types on both the probability to respond to selection and the selective pressure acting on gene-

specific expression noise (Table 1). We found that genes in scale-free networks have a signifi-

cantly higher probability of responding to selection than genes in random networks. These

results are in agreement with previous studies reporting a higher evolvability of scale-free

networks [42, 43]. Conversely, genes in small-world networks have a significantly lower proba-

bility of responding to selection than genes in random networks. Furthermore, there are signif-

icant effects of interactions between instrength and outstrength with the topology type on the

selective pressure on constituent genes.

To investigate which global topological features of the three network models affect expres-

sion noise evolution, we performed a principal component analysis (PCA) on 12 graph-level

measures. The first two dimensions of the PCA expressed 85.4% of the total dataset inertia (S2

Text), so we used the first two principal components (PCs) as synthetic explanatory variables

in linear mixed-effects models. The loading of the first synthetic variable (PC1) is dominated

by negative loadings of diameter and mean path distance, and the centralization measures,

namely positive loadings of outdegree and closeness centralization and negative loadings of

indegree and betweenness centralization. The diameter of a network is defined as the longest

shortest path between any two nodes. Centralization is a measure of the extent to which a net-

work is centered around a single node and can be computed from different centrality metrics.

The loading of the second synthetic variable (PC2) is dominated by the negative loading of the

average degree, average indegree and average outdegree measures (S2 Text). For a more intui-

tive interpretation, the signs of both PCs have been switched in the statistical analysis. There-

fore, PC1 shown in the results is dominated by positive loadings of diameter, mean path

distance, indegree centralization and negative loadings of outdegree centralization, and PC2 is

dominated by positive loadings of average degree. We refer to PC1 and PC2 as synthetic net-

work diameter and centralization and synthetic average degree, respectively.

The average expression variance per network is significantly negatively affected by synthetic

network diameter and centralization (linear model with synthetic network diameter and cen-

tralization coefficient β = -6.19, p-value < 2.2 × 10−16) and significantly positively affected by

the synthetic average degree (linear model with synthetic average degree coefficient β = 13.26,

p-value< 2.2 × 10−16). The mutual information was significant between the average expression

variance per network and synthetic network diameter and centralization (MI = 0.21, p-

value� 10−4, permutation test) and synthetic average degree (MI = 0.21, p-value� 10−4,
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permutation test). This finding means that global network properties affect the amplification

of noise through noise propagation between the genes. Specifically, networks with a lower

diameter, mean path distance, indegree centralization, and higher outdegree centralization

and average degree, had higher average gene expression variance. In the selected populations,

the average selective pressure per network was significantly negatively affected by both syn-

thetic network diameter and centralization and the synthetic average degree (linear model

with synthetic network diameter and centralization coefficient β = -0.003, p-value = 4.9 × 10−11,

Fig 6A; synthetic average degree coefficient β = -0.009, p-value < 2.2 × 10−16, Fig 6B). The

mutual information was significant between the average selective pressure per network and

synthetic network diameter and centralization (MI = 0.27, p-value� 10−4, permutation test)

and synthetic average degree (MI = 0.26, p-value� 10−4, permutation test). This result shows

that the average selective pressure acting on gene-specific expression noise in networks

decreases with an increase of network diameter, mean path distance, indegree centralization

and average degree per network. Conversely, the average selective pressure increases with an

increase of outdegree centralization (Fig 6A and 6B). In the populations evolved under neu-

trality, neither synthetic network diameter and centralization, nor synthetic average degree,

Table 1. Network topology type affects the probability of responding to selection and selective pressure on gene-specific expression noise under stabilizing selection

on gene expression level.

Response Explanatory variable Beta SE p-value1

Probability of responding to selection Instrength -1.9270 0.0284 < 2.2 × 10−16 ****
Outstrength -0.0829 0.0226 < 2.6 × 10−4 ***
Scale-free (BA) topology2 0.9209 0.1075 < 2.2 × 10−16 ****
Small-world (WS) topology3 -0.2684 0.0945 0.0045 **
Instrength:BA4 0.0120 0.0516 0.8159 n.s.

Instrength:WS 0.0006 0.0401 0.9873 n.s.

Outstrength:BA -0.2947 0.0252 < 2.2 × 10−16 ****
Outstrength:WS -0.0728 0.0333 0.0287 *

Gene-specific selective pressure Instrength -0.0377 0.0004 < 2.2 × 10−16 ****
Outstrength 0.0347 0.0003 < 2.2 × 10−16 ****
Scale-free (BA) topology 0.0019 0.0012 0.1404 n.s.

Small-world (WS) topology 0.0222 0.0013 < 2.2 × 10−16 ****
Instrength:BA 0.0143 0.0007 < 2.2 × 10−16 ****
Instrength:WS -0.0055 0.0006 < 2.2 × 10−16 ****
Outstrength:BA -0.0151 0.0003 < 2.2 × 10−16 ****
Outstrength:WS -0.0075 0.0005 < 2.2 × 10−16 ****

1 Coefficients and their significance were computed using linear mixed-effects models (see Methods). The dataset consisted of 3,000 populations with unique 40-gene

random, scale-free and small-world network topology samples, which were independently evolved 10 times under selection and 10 times under neutrality. The selective

pressure on each gene was calculated as the average normalized reduction of the intrinsic noise parameter during the evolutionary simulation and summarized as the

mean over all replicates in each scenario. Genes were termed responsive to selection if their selective pressure was above 0.5. Asterisks indicate statistical significance: n.

s.—p-value> 0.05;

*—p-value� 0.05;

**—p-value� 0.01;

***—p-value� 0.001;

****—p-value� 0.0001.
2 Barabási–Albert network model.
3 Watts–Strogatz network model.
4 Colons (‘:’) indicate variable interactions.

https://doi.org/10.1371/journal.pcbi.1010982.t001
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had a significant effect on the average selective pressure per network (linear model with syn-

thetic network diameter and centralization coefficient β = −2.8 × 10−7, p-value = 0.95; synthetic

average degree coefficient β = −1 × 10−7, p-value = 0.99, Fig 6C and 6D). Similarly, the mutual

information was insignificant between the average selective pressure per network and syn-

thetic network diameter and centralization (MI = 0.15, p-value = 0.72, permutation test) and

synthetic average degree (MI = 0.15, p-value = 0.59, permutation test).

Discussion

In this work, we aimed at understanding how natural selection shaped the distribution of

expression noise levels between genes in the genome. We hypothesized that selection for low

noise at the network level translates into differential selective pressures at the gene level. To

test this hypothesis, we developed a new gene regulatory network evolution model that incor-

porates stochastic gene expression, where the gene expression mean and variance are both her-

itable and, therefore, potentially subject to natural selection. We simulated the evolution of

gene-specific expression noise in populations of model gene regulatory networks under selec-

tive and non-selective conditions. In agreement with our hypothesis, we observed that individ-

ual genes respond differently to the global selective pressure and that this response depends on

the local and global network properties. In particular, we found that genes of high centrality

exhibit a stronger selective pressure to reduce gene-specific expression noise under stabilizing

selection on the expression level and that the genetic network structure affects the propagation

and evolvability of gene-specific expression noise. In the following, we further discuss the

implications of differential selective pressure acting on constituent genes in gene networks.

Mechanisms of intrinsic noise reduction

In this study we abstracted and summarized the many determinants of intrinsic expression

noise into a single parameter, which can be viewed as a modifier locus that can directly change

Fig 6. Global network properties affect the average selective pressure acting on gene expression noise under stabilizing selection on gene

expression level. A, B—Principal component variables consisting of the diameter and network centralization (A) and average degree (B) have a

significant negative effect on the average selective pressure per network. The two synthetic variables were constructed by performing a principal

component analysis on 12 graph-level network metrics. The lines indicate the 25% (lower dashed line), 50% (solid line), and 75% (upper dashed line)

fitted quantiles. The dataset consisted of 3,000 populations with unique 40-gene random, scale-free and small-world network topology samples, which

were independently evolved 10 times under selection and 10 times under neutrality. The selective pressure on each gene is calculated as the average

normalized reduction of the intrinsic noise parameter during the evolutionary simulation and summarized over all replicates in each scenario.

Coefficients and p-values are estimated using a linear model with average selective pressure as the response variable, and PC1 and PC2 as explanatory

variables. Mutual information (MI) p-values were computed with permutation test with 10,000 permutations.

https://doi.org/10.1371/journal.pcbi.1010982.g006
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the intrinsic noise of a given gene. This simplification permitted us to investigate the evolution

of expression noise in gene networks with computationally feasible evolutionary simulations.

In reality, multiple factors that affect gene expression variance in biological systems have been

reported. These include epigenetic factors, such as chromatic dynamics [44] and presence of

chromatin remodelling complexes [45]. Other factors affect transcription directly and can,

therefore, control expression noise: the promoter shape [36], presence of a TATA box [45],

presence and number [4] of TF binding sites, TF binding dynamics [46], presence of TF decoy

binding sites [47], and transcription rate. Factors affecting translation have also been shown to

play a role in controlling noise: miRNA targetting [48], mRNA lifetime, translation rate, and

post-translational modifications such as the protein degradation rate. Compartmentalization

of proteins by phase separation has also been shown to reduce noise [49]. Lastly, gene expres-

sion costs can also affect the gene expression level distributions, and thereby expression level

noise [50]. We have demonstrated the existence of a general selective pressure acting on gene

expression noise. Biological organisms may differ in the mechanisms used to respond to this

selective pressure, calling for further, data-driven, investigations.

Global network structure impacts noise propagation and evolution

By simulating thousands of networks with distinct structures, we were further able to assess

the impact of global network characteristics on gene-specific selective pressure. Given that

there is a trade-off between the fitness advantage of reducing gene-specific expression noise at

the gene level and its mechanistic cost (for instance, in terms of mRNA processing [51]), evolv-

ing the global network structure may offer an alternative way to reduce network-level noise.

Several motifs recurrently found in regulatory networks have an impact on expression noise,

such as negative [37–39] and positive autoregulation [41], feed-forward loops [41, 52, 53] and

interlinked feed-forward loops [54].

It is important, however, to distinguish two aspects when considering the effect of the net-

work structure on the expression dynamics of constituent genes: the network structure, i.e. the

topology of the graph, and the strength of each of the regulatory interactions, both of which

impact expression noise. The same network topology, but with different regulatory interactions

strengths, can give rise to markedly different network behaviours. In the gap gene system, for

example, it was shown that multiple subcircuits share the same regulatory structure, but yield dif-

ferent expression patterns because of their differences in active components and strength of regu-

latory interactions [55]. It results that network models of gene expression noise must incorporate

both graph topology and interaction strength between all constituent genes. The Wagner model

constitutes a simple framework that fulfills these two conditions. However, it has its limitations.

Namely, it is not fine-grained enough to capture the complex dynamics of real regulatory net-

works. Models that incorporate higher molecular detail, such as large systems of differential

equations, are necessary to precisely capture in fine detail the expression dynamics of a real bio-

logical network, but they come with a cost in terms of high computation time (preventing their

use in evolutionary simulations), low tractability and, often, the inability to model noise.

Implications of selection on expression noise on the evolution of genomes

and gene regulatory networks

One mechanism by which networks and genomes evolve is gene duplication. Gene duplica-

tions are a major source of new genes and thought to be a primary source of evolutionary

novelties. It has been long proposed that new functionality arises from duplicated genes by

allowing the other gene copy to acquire new functions (neofunctionalization) or improve

existing functions (subfunctionalization) by relaxing the selective pressure acting on a single
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gene through an additional redundant copy [56]. However, most of the time the redundant

copy is lost before new functionality can arise [57], either by genetic drift alone or because hav-

ing the extra copy is deleterious. The redundant copy has a chance to evolve a new function or

improve an existing one while it is evolving neutrally or reaches fixation in the population, or

alternatively, if there is some fitness benefit of the additional copy that increases its frequency

in the population. Some benefits of having additional gene copies have been shown, such as

increased expression level for genes whose pre-duplication expression level was far from the

optimum [58]. Moreover, duplicating a gene reduces its expression noise [59, 60], averaging

the stochastic events over the two gene copies. The reduction of expression noise may, there-

fore, constitute another benefit of a gene duplication, increasing its chance of fixation in the

population. As the gene number increases in bacterial genomes, the number of regulatory

genes increases 4-fold [61], indicating a gene duplication is more likely to stay if the gene is a

regulatory gene. We hypothesize that selection on expression noise, particularly on regulatory

genes, could, therefore, be one of the forces driving the maintenance of duplicated genes.

Applications of the model framework to study complex systems

In this study, we developed a new regulatory and evolutionary model to study expression noise

in gene regulatory networks. The model represents key features of evolving gene regulatory

networks, namely the non-independence of gene expression levels and fitness determined by

the expression level of many or all genes in the network. Our results revealed that differential

selective pressure acts on intrinsic expression noise of constituent genes and that network-

level topological properties affect noise propagation within the network.

Although our study focused on gene regulatory networks, our conclusions potentially apply

to a broader range of systems. In particular, we posit that any system that fulfills two essential

properties will exhibit a similar behavior: (i) the amount of product of each system component

(here called “expression level”) is not independent and (ii) the performance (here termed “fit-

ness”) is determined by the product level of one or several of the components of the system.

There are many other complex systems that fulfill these criteria, such as biological metabolic

networks, ecological food webs, neural networks, economies, transportation and other infra-

structure networks, and social networks. We expect that the same constraints act on noise in

elements of these systems, and that some of the conclusions from gene regulatory networks

could be carefully applied to other complex systems.

Conclusion

Our results show that selection for low expression noise acting on a system (the gene network)

resulted in differential selective pressures on its individual components (the genes). We dem-

onstrated that the position of the gene in the network and the global network structure act as

important drivers of the evolution of intrinsic expression noise. Investigating how gene net-

works evolve to cope with expression noise will reveal mechanisms of how complex biological

systems adapt to function with an inevitable molecular noise in their components. A better

comprehension of these mechanisms is a prerequisite to understand the evolution of complex-

ity in biological systems, from the first self-replicating RNA systems to modern eukaryotic

cells expressing tens of thousands of genes.
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References
1. Elowitz MB. Stochastic Gene Expression in a Single Cell. Science. 2002; 297(5584):1183–1186.

https://doi.org/10.1126/science.1070919 PMID: 12183631

2. Raser JM, O’Shea EK. Noise in Gene Expression: Origins, Consequences, and Control. Science (New

York, NY). 2005; 309(5743):2010–2013. https://doi.org/10.1126/science.1105891 PMID: 16179466

3. Chalancon G, Ravarani CNJ, Balaji S, Martinez-Arias A, Aravind L, Jothi R, et al. Interplay between

gene expression noise and regulatory network architecture. Trends in Genetics. 2012; 28(5):221–232.

https://doi.org/10.1016/j.tig.2012.01.006 PMID: 22365642

4. Sharon E, van Dijk D, Kalma Y, Keren L, Manor O, Yakhini Z, et al. Probing the effect of promoters on

noise in gene expression using thousands of designed sequences. Genome Research. 2014; 24

(10):1698–1706. https://doi.org/10.1101/gr.168773.113 PMID: 25030889

5. Lehner B. Selection to minimise noise in living systems and its implications for the evolution of gene

expression. Molecular Systems Biology. 2008; 4(1):170. https://doi.org/10.1038/msb.2008.11 PMID:

18319722

PLOS COMPUTATIONAL BIOLOGY Evolution of gene expression noise in model gene regulatory networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010982 April 20, 2023 20 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010982.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010982.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010982.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010982.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010982.s006
https://doi.org/10.1126/science.1070919
http://www.ncbi.nlm.nih.gov/pubmed/12183631
https://doi.org/10.1126/science.1105891
http://www.ncbi.nlm.nih.gov/pubmed/16179466
https://doi.org/10.1016/j.tig.2012.01.006
http://www.ncbi.nlm.nih.gov/pubmed/22365642
https://doi.org/10.1101/gr.168773.113
http://www.ncbi.nlm.nih.gov/pubmed/25030889
https://doi.org/10.1038/msb.2008.11
http://www.ncbi.nlm.nih.gov/pubmed/18319722
https://doi.org/10.1371/journal.pcbi.1010982


6. Fraser HB, Hirsh AE, Giaever G, Kumm J, Eisen MB. Noise Minimization in Eukaryotic Gene Expres-

sion. PLoS Biology. 2004; 2(6):e137. https://doi.org/10.1371/journal.pbio.0020137 PMID: 15124029

7. Wang Z, Zhang J. Impact of gene expression noise on organismal fitness and the efficacy of natural

selection. Proceedings of the National Academy of Sciences. 2011; 108(16):E67–E76. https://doi.org/

10.1073/pnas.1100059108 PMID: 21464323

8. Barroso GV, Puzovic N, Dutheil JY. The Evolution of Gene-Specific Transcriptional Noise Is Driven by

Selection at the Pathway Level. Genetics. 2018; 208(1):173–189. https://doi.org/10.1534/genetics.117.

300467 PMID: 29097405

9. Duveau F, Hodgins-Davis A, Metzger BP, Yang B, Tryban S, Walker EA, et al. Fitness effects of altering

gene expression noise in Saccharomyces cerevisiae. eLife. 2018; 7:e37272. https://doi.org/10.7554/

eLife.37272 PMID: 30124429

10. Beaumont HJE, Gallie J, Kost C, Ferguson GC, Rainey PB. Experimental evolution of bet hedging.

Nature. 2009; 462(7269):90–93. https://doi.org/10.1038/nature08504 PMID: 19890329
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38. Dublanche Y, Michalodimitrakis K, Kümmerer N, Foglierini M, Serrano L. Noise in transcription negative

feedback loops: simulation and experimental analysis. Molecular Systems Biology. 2006; 2(1):41.

https://doi.org/10.1038/msb4100081 PMID: 16883354
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