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Abstract 1

Expression noise, the variability of the amount of gene product among isogenic cells grown in identical 2

conditions, originates from the inherent stochasticity of diffusion and binding of the molecular players 3

involved in transcription and translation. It has been shown that expression noise is an evolvable 4

trait and that central genes exhibit less noise than peripheral genes in gene networks. A possible 5

explanation for this pattern is increased selective pressure on central genes since they propagate their 6

noise to downstream targets, leading to noise amplification. To test this hypothesis, we developed 7

a new gene regulatory network model with inheritable stochastic gene expression and simulated 8

the evolution of gene-specific expression noise under constraint at the network level. Stabilizing 9

selection was imposed on the expression level of all genes in the network and rounds of mutation, 10

selection, replication and recombination were performed. We observed that local network features 11

affect both the probability to respond to selection, and the strength of the selective pressure acting 12

on individual genes. In particular, the reduction of gene-specific expression noise as a response 13

to stabilizing selection on the mean expression is higher in genes with higher centrality metrics. 14

Furthermore, global topological structures such as network diameter, centralization and average 15

degree affect the average expression variance and average selective pressure acting on constituent 16

genes. Our results demonstrate that selection at the network level leads to differential selective 17

pressure at the gene level, and local and global network characteristics are an essential component 18

of gene-specific expression noise evolution. 19

Introduction 20

Living beings are complex systems constituted of many genes that interact with each other and 21

the environment to create an organism. From prokaryotes with a few hundred essential genes, to 22

eukaryotes with possibly several thousands, cells require many gene products to work together 23

to perform housekeeping functions and to replicate. Fine-tuned molecular processes, generally 24

referred to as gene expression, ensure how, where and when these products are generated. However, 25

gene expression is an inherently noisy process (1; 2), which involves many steps where molecules 26

participating in the expression machinery diffuse and bind to target molecules. Additionally, these 27

molecules are often present in small copy numbers, increasing the susceptibility of gene expression 28

to stochastic events. Consequently, there is a variation in gene expression levels among cells, even if 29

they are isogenic and grown in a homogeneous environment, and this inevitable variation has been 30

termed gene expression noise. Organisms have to express hundreds of genes, each one of which is 31

noisy – raising the question of how they evolved to cope with this inevitable noise. 32

The expression noise level of a particular gene may be decomposed into two components, called 33

extrinsic and intrinsic. Extrinsic noise affects all genes equally and results from the sharing of 34

key molecules, such as RNA polymerases and ribosomes, by all genes in the expression process, 35

as well as, for instance, differences in cell size and phase in the cell cycle. Intrinsic noise is gene- 36

specific and results from different chromatin states, cis-regulatory elements and kinetic parameters 37

of transcription and translation of each gene (3). Minor sequence mutations can have a significant 38

effect on the level of expression noise. For example, a small number of single-nucleotide changes in a 39

transcription factor binding site were reported to have a large effect on the expression noise level (4). 40

Since (i) there is variation in the level of intrinsic noise of genes, and (ii) intrinsic noise is genetically 41

determined – and, therefore, heritable – gene expression noise can be shaped by natural selection. 42

Evidence of selection on expression noise was first seen in the fact that dosage-sensitive genes (5) 43

and essential genes exhibit lower levels of expression noise (6; 7). Intrinsic noise was also reported to 44
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correlate with the strength of selection acting on the encoded protein. Namely, proteins with a lower 45

ratio of non-synonymous over synonymous substitution rate (Ka/Ks) have a lower level of expression 46

noise (8). Changes in the expression noise of a single gene may be either beneficial or deleterious, 47

depending on how far its mean expression is from the optimal expression level (9). Expression 48

noise is deleterious if the mean expression level is close to the optimal, as higher variation, in this 49

case, generates a larger number of less fit individuals, reducing the population fitness. Conversely, 50

expression noise can be beneficial if the mean expression level is far from the optimum, as noisy 51

genes are more likely to generate cells with an expression level closer to the optimum. Noisy gene 52

expression can thus be part of a bet-hedging strategy and was observed in genes involved in immune 53

and environmental response (10). The fitness cost of changes in the level of expression noise in the 54

fitness landscapes of ≈ 30 yeast genes have been shown to be on the same order as fitness costs of 55

changes in mean expression level (11). Since the fitness effect of different levels of expression noise 56

can be as detrimental as different mean expression levels, which are thought to be extensively under 57

selection (12), it can be assumed that expression noise is extensively under selection genome-wide. 58

Prevalent selection on expression noise has been demonstrated in naturally segregating promoter 59

variants of E. coli (13). 60

The phenotype (and, therefore, the fitness) of an organism depends on the interaction of many 61

genes. As a result, genes do not evolve independently, and the selective pressure acting on a gene’s 62

intrinsic noise depends on its interactions with other genes. Understanding the evolution of gene 63

expression noise requires accounting for such gene-to-gene interactions, commonly depicted by a 64

gene network. The propagation of noise from gene to gene in the network was established both 65

theoretically and experimentally (14; 15). Genes with many connections propagate their noise to a 66

more substantial extent than genes with fewer connections and, therefore, contribute more to the 67

global noise levels of the network. Gene networks are robust to variation in the expression level 68

of their system components to some degree, but at a critical point the global noise of the network 69

becomes too high and leads to network collapse. Selection against noise at the network level was, 70

therefore, hypothesized to result in stronger constraints on the intrinsic noise of highly connected 71

genes (8). Moreover, the topological structure of the network has been shown to affect the pattern 72

of noise propagation (16), suggesting that the topology of the network might impose additional 73

selective constraints on the constituent genes. 74

Here, we test the hypothesis that expression noise of highly connected genes in gene networks 75

is under stronger selective pressure than expression noise in peripheral genes using an in silico 76

evolutionary experiment. We introduce a new gene regulatory network evolution model, which 77

includes an evolvable component of stochastic gene expression, and use it to evolve thousands of 78

network topology samples over 10,000 generations. These simulations showed that highly connected 79

genes have a more constrained intrinsic expression noise. They further revealed that not all genes 80

might evolve in response to network-level selection, and the probability that they do so depends 81

on local network properties. Lastly, the average selective pressure acting on genes in a network is 82

affected by topological features such as network diameter, centralization and average degree. 83

Materials and methods 84

We introduce a new gene regulatory network model that incorporates intrinsic expression noise. We 85

then use this model within a forward simulation framework to simulate the evolution of populations 86

of networks with mutable levels of intrinsic expression noise. These simulations allow us to study 87

how the selective pressure acting on expression noise varies within the regulatory network. 88
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A gene regulatory network model with stochastic gene expression 89

To investigate the evolution of stochastic gene expression in gene regulatory networks, we first extend 90

Wagner’s gene network model (17) to integrate gene-specific expression noise. 91

We model a network of n genes (n = 40 in this study) defined by a regulatory matrix W = 92

(wij)1≤i≤n, 1≤j≤n, and a vector of intrinsic, gene-specific noise {ηinti }1≤i≤n. Each element wij of the 93

regulatory matrix W defines the regulatory effect of gene j on gene i. The value of wij is a real 94

number and is referred to as regulatory strength of gene j on gene i. In case wij > 0, gene j is an 95

activator of gene i and increases its expression level. Conversely, when wij < 0, gene j is a repressor 96

of gene i and decreases its expression level. Lastly, if wij = 0, gene i is not regulated by gene j and 97

gene j has no effect on expression level of gene i. Two genes i and j are connected by an edge in the 98

network if at least one of wij and wji is non-null. The intrinsic noise vector {ηinti }1≤i≤n defines the 99

gene-specific expression noise of each gene in the network. The regulatory matrix and the intrinsic 100

noise vector together constitute a unique genotype in this modeling framework (Fig 1A). 101

102

The phenotype (the expression level of each gene) in the model is represented by a state vector 103

{Si}1≤i≤n = {s1, s2, . . . , sn}, which describes the expression level of each gene. The state vector at 104

t0 is set to an arbitrary basal expression level value ({S0
i }1≤i≤n = {Sbasali }1≤i≤n = {20, ..., 20} in 105

this study). In every time step t (1 ≤ t ≤ Tr, with Tr = 50 in this study), the expression level of 106

each gene is recomputed. The cumulative effect of all transcription factors in the expression level of 107

each gene is considered to be additive, i.e. we assume there is no cooperative or competitive binding 108

of transcription factors to transcription factor binding sites. The activation rate ai(t) is defined as 109

the sum of all effects the regulators of gene i have on its expression level at time step t: 110

ai(t) =
n∑
j=1

wij · sj(t), (1)

in which case the dynamic equation for the expression level of each gene in the following time step is: 111

si(t+ 1) ∼ N
(
sbasali + ai(t), η

int
i

)
. (2)

In every time step the expression level of a gene is drawn from a normal distribution, where the mean 112

equals the sum of basal expression level (sbasali ) and activation rate (ai(t)), and the variance equals 113

the gene noise genotype (ηinti ). If the expression level value drawn from the normal distribution 114

is below the minimal (smin = 0) or above the maximal expression level (smax = 100), it is set 115

to the minimal or maximal expression level, respectively. The expression levels of all genes are 116

synchronously updated in each time step. The steady state expression levels are invariant to whether 117

the expression levels of each gene are updated synchronously or asynchronously (SI Section 1.2, 118

Fig S1A and Fig S2). Similarly, mean expression level, expression variance, CV, noise and Fano 119

factor are invariant to the updating mode (Fig S1B-F). The model may be realized as stochastic or 120

deterministic, depending on the noise parameter values (Fig 1B). 121

Forward-in-time simulation of expression noise evolution 122

To investigate how gene-specific expression noise of constituent genes responds to stabilizing selection 123

at the network level, we used the newly introduced model to perform forward-in-time evolutionary 124
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width=21cm
Fig 1. The evolution of gene-specific expression noise was simulated using populations
of model gene regulatory networks with mutable levels of gene-specific expression
noise under selective and non-selective conditions. A - Gene regulatory network model.
The genotype consists of the intrinsic noise vector ηint and regulatory matrix W . The intrinsic noise
vector defines the gene-specific expression variance of each gene in the network. The regulatory
matrix defines the regulatory interactions in the network. The genotype is realized into the
phenotype using the dynamical equation described in the main text. The phenotype is given by the
state vector S, which represents the expression level of each gene in the network. B - Deterministic
(left) and stochastic (right) realizations of the model. C - Steps of the evolutionary simulation
process. Each established network configuration was used as a founding network for the network
populations used in the noise evolution simulation. In every generation, genotypes are realized and
phenotypes (expression levels) are sampled from the last time step. Fitness is calculated from the
expression levels. If the populations are evolved under selection, fitness is calculated as the distance
of the expression level of each gene from the optimal expression level. Genotypes are reproduced
based on their relative fitness and mutations in the intrinsic noise vectors are introduced. Noise
genotype vectors are recombined by randomly choosing individuals for recombination and shuffling
their noise vectors. The process is repeated for 10,000 generations. D - Algorithm overview.
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simulations in which we allow the gene-specific noise levels to mutate. An in silico evolutionary process 125

consisting of rounds of mutation, selection, recombination and replication events of a population of 126

N (N = 1, 000 in this study) individuals was performed for T (T = 10, 000) generations (Fig 1C). 127

We first generated network topologies that would serve as the founding network for the populations 128

in our simulations. We generated 2,000 random (Erdős–Rényi model) network topologies of 40 nodes 129

with regulatory strength values drawn from a uniform distribution U(−3, 3). The network density 130

was d = 0.05. Only connected network graphs were used, meaning there is only one component 131

and there are no disconnected subgraphs. In order to assess the effect of the topology structure on 132

the evolution of expression noise, we also generated an additional 1,000 scale-free (Barabási–Albert 133

model) and 1,000 small-world (Watts–Strogatz model) network topologies with the same size and 134

density. Both random and small-world networks are characterized by a Poisson degree distribution 135

and short mean shortest path length, but random networks have a low clustering coefficient, while 136

small-world networks have a high clustering coefficient. Scale-free networks are characterized by a 137

degree distribution that follows a power law. Real-world networks exhibit degree distributions similar 138

to power-law distributions, high clustering and short path lengths. As such, real-world networks 139

have features of both scale-free and small-world networks (18). 140

In the simulation of expression noise evolution the regulatory interactions were immutable and 141

the values of the noise genotype vectors were allowed to mutate. Stabilizing selection was imposed 142

on all constituent genes by setting the value of optimal expression level as the mean equilibrium 143

expression level of each gene. The fitness F (s) of a phenotype s was calculated as in Laarits et al. 144

(19), where fitness is defined as the distance from the optimal expression state vector {sopti }1≤i≤n, 145

weighted by the selective pressure given by {ρi}1≤i≤n: 146

F (s) = e
−

n∑
i=1
|sopti −si|/(nρi)

(3)

The selective pressure parameters {ρi}1≤i≤n define the contribution of each gene to the fitness of 147

the phenotype. In this study, the strength of the imposed selective pressure is set to be identical 148

for all constituent genes (∀i ρi = 1). Since the strength of the selective pressure we impose on all 149

genes is identical, any differences in the evolutionary outcome we observe after removing the effect of 150

drift will be due to gene differences in their network interactions. Individuals were reproduced into 151

the next generation with a probability equal to their relative phenotype fitness. The fitness of all 152

phenotypes in populations evolved under non-selective conditions was set to an equal constant value, 153

regardless of gene expression levels. Mutations were introduced at a rate µη (µη = 0.01) per gene per 154

replication event. The values for noise genotype mutations were drawn from a normal distribution 155

N (100, 40). Recombination was implemented by choosing a random offspring individual at a rate r 156

(r = 0.05) and introducing a random break point in the linear genome. The genotype values in the 157

genome segment defined by the break point were then exchanged with another randomly chosen 158

individual from the offspring population. A constant population size N (N = 1, 000) was maintained. 159

To account for the effect of genetic drift, the noise evolution simulations of each founding network 160

population were replicated 10 times under selection and 10 times under neutrality. 161

We found that the expression level of most genes in networks with random configurations converge 162

to either smin or smax under a deterministic realization. The measurement of variance of genes 163

that are either not expressed at all or expressed at the maximal level would be impaired since their 164

expression range is constrained by the lower and upper expression level boundary. Since the study 165

of expression variance is our main focus, we added a network establishment step before the noise 166

evolution simulations, in which we subject the network regulatory matrix to mutation and selection 167

for intermediate expression levels. During the network establishment step networks are realized 168

August 1, 2022 6/25

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502352
http://creativecommons.org/licenses/by-nd/4.0/


deterministically, i.e. the intrinsic noise genotype of all genes is 0. Networks with intermediate 169

steady state expression levels were established through the evolutionary process by imposing a target 170

expression level ({sopti }1≤i≤n = {50, ..., 50}) for all genes and allowing the strength of regulatory 171

interactions to mutate. Mutations were introduced at a rate µw (µw = 0.05) in non-zero entries in 172

the regulatory matrix, preserving the network topology structure (Erdős–Rényi, Barabási–Albert, or 173

Watts–Strogatz model). The values for regulatory strength mutations were drawn from a normal 174

distribution N (0, 2). Recombination was not implemented at this stage. Fitness of each individual 175

was computed as the distance of the phenotype to the optimal expression state vector using Eq.1. 176

Individuals were reproduced with a probability equal to the relative fitness and the population size 177

kept constant. Network regulatory configurations in which the expression level of all genes would 178

not converge to a fixed point and would oscillate were removed by setting their fitness value to 0. 179

Expression level dynamics were termed oscillating if the sum of the differences between expression 180

level in the last time step and previous τ time steps (τ = 10) was higher than ε (ε = 10−6). A stable, 181

i.e. non-oscillating, expression level dynamics satisfied the following criterion (19): 182

Φ(S(t)) =
1

τ

t∑
θ=t−τ

D(S(θ), S(t)) < ε (4)

where D is the distance between two vectors D(S1, S2) =
n∑
i=1
|S1
i − S2

i |/n. 183

The network establishment process consisting of rounds of mutation, selection and reproduction 184

of a population of N (N = 1, 000) individuals was performed for T (T = 10, 000) generations, for 185

each network topology. The network regulatory configuration with the highest fitness was chosen 186

from the evolved population and this network configuration was used to generate the starting network 187

population for the noise evolution simulations. 188

The gene network model and evolutionary simulations were implemented in C++ and the source 189

code is available at https://gitlab.gwdg.de/molsysevol/supplementarydata_expressionnoise/ 190

cpp. 191

Analysis of simulation results: expression noise and network centrality measures 192

The evolutionary outcomes (i.e. the change of phenotypes and genotypes) were measured as change 193

of expression noise and selective pressure for each network, respectively. Expression noise in the 194

first and last generation in each evolved population was measured as the variance of the population 195

expression level states for each gene. The change of expression noise (phenotypic evolution) between 196

the first and last generation was measured as the relative change of expression noise, calculated 197

as the difference of expression variance between the first and last generation divided by their sum 198

(σ2gen1 − σ2gen10k)/(σ2gen1 + σ2gen10k). 199

The selective pressure (genotypic evolution) acting on each gene was measured as the average 200

change of noise genotype in every second generation relative to the starting level (Fig 1C). To 201

compare the effect of node centrality on the selective pressure acting on constituent genes, we 202

computed node-level network centrality measures for each node in the networks. We focused our 203

analysis on two local network centrality measures, node instrength and outstrength, but over 30 204

network centrality measures were analyzed (SI Section 2). Instrength of node i is measure of the 205

strength and number of in-going links, i.e. how strongly a gene is being regulated: 206

Instrength(i) =
n∑
j

|wij |. (5)
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Conversely, the outstrength of node j is a measure of the strength and number of outgoing links, i.e. 207

how strongly a gene regulates other genes downstream: 208

Outstrength(j) =

n∑
i

|wij |. (6)

Further, we computed global graph-level metrics, such as mean graph distance and performed a 209

principal component analysis to reduce the dimensionality (SI Section 2.2). The results were analysed 210

in R 3.6.3 (20). Network analyses were performed using the igraph 1.2.4.2 (21) and statnet 211

2019.6 (22) packages. Principal component analysis was performed using the ade4 1.7.15 (23) 212

package. 213

Analysis of simulation results: linear modeling 214

We fitted linear mixed-effects models using network centrality measures as fixed effect variables and 215

the network topology sample as a random effect variable, allowing for control of intra-network corre- 216

lation in the response variable. We tested different transformations of the response and explanatory 217

variables in order to improve linearity, and variance structures to account for heteroskedasticity of 218

the residuals. A model where the residual variance was an exponential function of the node absolute 219

instrength was shown to provide the best fit according to the minimal Akaike’s Information criterion 220

and was used for all subsequent models (SI Section 3). Two types of models were fitted: a logistic 221

regression where the response variable was set to whether a gene answered to selection or not, and 222

standard regressions that used expression variance, relative change of expression variance or selective 223

pressure as response variables. Linear mixed-effect modelling was performed using the nlme 3.1.144 224

(24) and lme4 1.1.27.1 (25) packages. Marginal and conditional R2 values were computed using 225

the MuMIn 1.43.17 (26) package. Network centrality measures used as explanatory variables in 226

our linear models were correlated (Pearson’s r = −0.17, p-value < 2.2× 10−16, SI Fig 7B), so we 227

computed the variance inflation factor (VIF) using the car 3.0.11 (27) package. The VIF of all 228

linear models was less than 3; therefore, colinearity was considered to have negligible impact on 229

the inferred statistical significance (28). To improve homoskedasticity of the residuals in the linear 230

models, we also performed each model fit on two filtered datasets: one in which genes with zero 231

values of instrength or outstrength were removed, and one in which only genes with zero values of 232

instrength or outstrength were kept. The same pattern of effects and significance is observed in the 233

filtered as in the main dataset, so we included the results of the complete dataset in the main text 234

and reported the results of the reduced dataset in the supplementary information (SI Section 5). 235

Finally, since in some cases variable transformation, heterogeneous variance modeling and data 236

filtering did not ensure normality and independence of the residuals, we assessed the amount of 237

resulting bias in the estimation of p-values using a randomization test, in which we fitted a selected 238

model on 10,000 permuted datasets. We chose the model of relative noise change (SI Section 3.2), 239

as the corresponding residuals were significantly departing normality (Shapiro-Wilk test, p-value 240

< 2.2× 10−16) and independence (Box-Ljung test, p-value = 8.9× 10−7). For each permutation, we 241

shuffled the values of the response variable (relative change of variance) within each network topology, 242

which removes the effect of network metrics on the change of noise, but preserves the distributions 243

of each metric per network, as well as putative colinearity between explanatory variables. Using 244

α = 0.05 as a significance cutoff value, we found a false discovery rate (FDR) of 6.0% for the effect 245

of instrength and and 6.7% for the effect of outstrength. While these values are above the expected 246

5%, the FDR inflation was found to be relatively low and we concluded that the non-normality of 247

residuals did not affect our conclusions. 248
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Analysis of simulation results: information-based metrics 249

As an additional line of evidence, we calculated mutual information between the expression noise 250

and centrality metrics using the infotheo 1.2.0 (29) package. Monte Carlo permutation tests with 251

10,000 permutations were used to compute p-values for the significance of the mutual information 252

between each pair of tested variables. The simulation results data and the code necessary to 253

reproduce all figures is available at https://doi.org/10.5281/zenodo.6939845, together with the 254

the code necessary to generate all raw simulation files. 255

Results 256

To investigate the evolution of gene-specific expression noise in gene networks, we introduced a new 257

gene regulatory model with stochastic gene expression. This model extends Wagner’s model (17) 258

by adding node-specific intrinsic noise parameters (Fig 1A-B). In this framework, the phenotype 259

is represented by the expression level of each gene, and is the realization of a random distribution 260

determined by the genotype. The fitness of an individual is further determined by its distance to 261

an optimal phenotype, therefore, stabilizing selection is implemented as acting on the expression 262

level. We used this model to simulate the evolution of populations of gene regulatory networks 263

with mutable levels of gene-specific expression noise under selective and non-selective conditions 264

(Fig 1C-D), and assessed how node properties affect the evolution of intrinsic noise. 265

Expression noise propagates along the regulatory network 266

We first investigated how noise propagated in the model gene regulatory networks. It was shown 267

that noise is additive in biological networks and, therefore, propagates from regulators to regulated 268

genes (14; 15). To assess whether our model successfully captured this property, we generated a 269

dataset of 2,000 realized random network topologies, and tested whether gene expression variance 270

increased with the number of ingoing regulatory links. As expected, we found that the absolute 271

instrength of a gene had a significant positive effect on gene expression variance (linear mixed-effects 272

model with coefficient β = 0.28, p-value < 2.2× 10−16) (Fig 2A), indicating that noise propagation 273

was captured in our model. Furthermore, the mutual information between gene expression variance 274

and absolute instrength was significant (MI = 0.67, p-value ≤ 10−4, permutation test). High node 275

instrength increases expression noise, in line with the experimental evidence that the noisiness of 276

promoters increases with the number of regulatory inputs (30). 277

We then looked at fitness costs associated with high expression noise in regulators and regulated 278

genes. In a dataset of 1,000 random network topologies, we assessed the mean fitness of the clonal 279

populations of 1,000 individuals under stabilizing selection on the expression level. Each gene was 280

imposed 5 different levels of intrinsic noise, while the intrinsic noise of the rest of the network was 281

kept at 0. We found that increasing the level of expression noise of a single gene decreased the mean 282

fitness of the network (linear mixed-effects model with coefficient β = -0.002, p-value < 2.2× 10−16), 283

as expected. However, the strength of this effect depended on the gene centrality. The reduction of 284

fitness due to gene-specific expression noise was significantly, but marginally, affected by instrength 285

(linear model with coefficient β = 0.004, p-value < 2.2× 10−16, Fig 2B). The mutual information 286

between mean fitness of the population and absolute instrength was not significant (MI = 0.22, 287

p-value = 0.18, permutation test). However, the mean fitness significantly decreased with node 288

outstrength (linear model with coefficient β = -0.19, p-value < 2.2× 10−16, Fig 2C). The mutual 289

information between mean fitness of the population and absolute outstrength was significant (MI = 290
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Fig 2. Noise propagation is captured by the gene regulatory network model. A -
Gene-specific expression variance increases with the absolute instrength of the node, indicating noise
propagation is reflected in the gene regulatory network model. The lines indicate the 25% (lower
dashed line), 50% (solid line), and 75% (upper dashed line) fitted quantiles. B, C - Gene-specific
expression variance decreases fitness in gene networks under stabilizing selection on gene expression
level. Increasing the level of gene-specific expression noise reduces the mean fitness of the clonal
population. The mean fitness of the population is significantly, but marginally, increased by noise in
genes with higher node instrength (B), and significantly decreased by noise in genes with higher
node outstrength (C). Lines represent the smoothed conditional means and grey bands represent the
95% confidence interval bands. Coefficients, p-values and partial marginal R2 measures are
estimated using linear mixed-effects models with expression variance or mean fitness as the response
variable, instrength and outstrength as fixed effect explanatory variables, and the network topology
sample as the random effect explanatory variable. Mutual information (MI) p-values were computed
with a permutation test with 10,000 permutations.

0.43, p-value ≤ 10−4, permutation test). Higher fitness cost of expression noise in gene with high 291

outstrength suggests there is a differential selective pressure acting on genes based on their centrality 292

in the gene regulatory network, which we explore in the next section using an in silico evolutionary 293

experiment. 294

295

Gene expression noise is reduced under a stabilizing selection regime 296

To investigate how gene-specific expression noise responds to stabilizing selection at the network- 297

level, we simulated the evolution of 2,000 random network topologies with and without selection 298

on the gene expression level. We observed that gene expression variance decreased throughout 299

evolution under selective conditions (Fig 3A), and the distribution of intrinsic noise parameters 300

in the population shifted towards lower noise genotype values (Fig 3B), indicating that low-noise 301

alleles conferred a fitness increase to the network. Conversely, gene expression variance remained 302

constant throughout evolution under neutral conditions, and the distribution of noise genotypes 303

reflected only the distribution of random mutations. Replicating the simulations for each network 304

topology sample yielded similar reduction of gene expression variance (Fig 3C) and median noise 305

parameter in the population (Fig 3D). As the initial networks were at their optimal expression level, 306
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Fig 3. Gene-specific expression noise evolves in a model with selection. A - The
distribution of expression levels of an example gene throughout evolution in populations evolved
under stabilizing selection on gene expression level and under neutrality. The variance of gene
expression level is reduced under selection, but not under neutrality. B - The distribution of
intrinsic noise parameters of an example gene throughout evolution in populations evolved under
selection and under neutrality. The median intrinsic noise parameter skews to lower values under
stabilizing selection, but not under neutrality. C, D - Replicates of the simulations with the same
input network and parameters. Replicates have different dynamics, but reach similar outcomes in
terms of expression variance (C) and median intrinsic noise parameter (D) in the evolved
populations. The evolution of each network topology sample was replicated 10 times under selection
and 10 times under neutrality.

the mean expression level did not change during evolution and was highly correlated between the 307

first and last generations (Pearson’s r = 0.99, p-value < 2.2× 10−16, SI Section 1.4), confirming that 308

selection acted only on the gene expression variance. Population size had a positive effect on the 309

selective pressure acting on genes, as expected, selection being more efficient in large populations 310

(SI Section 1.3, Fig S3). A population size of 1,000 individuals was chosen for the main simulations 311

as the optimal population size in the trade-off between selecting mutations with small effects and 312

reducing computational speed. 313

Next, we investigated how individual nodes within a network respond to selection, based on their 314

centrality properties. 315

316

Evolutionary change in phenotypes: regulators reduce their expression noise to 317

a higher degree 318

We first analysed the phenotype change, i.e. the relative change in gene-specific expression variance 319

after evolution. The variance of gene expression depends both on the intrinsic noise of the genes 320

(that is, its genotype in our model) and the number and noise of the genes it is connected with. 321

We fitted linear models to assess the impact of the absolute instrength and outstrength measures 322

on the relative change in expression variance for each node in each network. Under selection, both 323

absolute instrength and absolute outstrength had a significant negative effect (linear mixed-effects 324

model with coefficients βinstrength = -0.003, p-value = 2.9 × 10−10, Fig 4A; βoutstrength = -0.046, 325

p-value < 2.2× 10−16, Fig 4B), meaning that genes with more and stronger connections reduced 326

their expression variance to a larger extent than less connected genes. The effect was notably 327
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Fig 4. Node-level network centrality measures affect the relative change of
gene-specific expression variance under network-level selection. For each gene, the
relative change of expression variance before and after evolution (Rel. ∆ expr. variance) was
averaged over all replicates. A, B - Absolute instrength (A) and absolute outstrength (B) have a
significant negative effect on the relative change in gene expression variance in populations evolved
under selection. A lower value of relative change of expression variance indicates a bigger reduction
in expression variance between the first and last generation and a stronger response to selection.
The lines indicate the 25% (lower dashed line), 50% (solid line), and 75% (upper dashed line) fitted
quantiles. C, D - Absolute instrength (C) and absolute outstrength (D) have a significant, but
negligible, negative effect on the relative change in gene expression variance in the populations
evolved under neutrality. The dataset consists of 2,000 populations with unique 40-gene random
network topology samples, which were independently evolved 10 times under selection and 10 times
under neutrality. Coefficients, p-values and partial marginal R2 measures were estimated using
linear mixed-effects models with relative change of gene-specific variance as the response variable,
instrength and outstrength as fixed effect explanatory variables, and the network topology sample
as the random effect explanatory variable. Mutual information (MI) p-values were computed using
10,000 permutations.

stronger for outstrength (marginal R2 = 0.15) than for instrength (marginal R2 = 5.2 × 10−4). 328

Similarly, the mutual information was significant between the relative change in gene expression 329

variance under selection and absolute instrength (MI = 0.09, p-value ≤ 10−4, permutation test) and 330

absolute outstrength (MI = 0.14, p-value ≤ 10−4, permutation test). Genes with high outstrength 331

are strong regulators and their reduction of expression variance to a larger extent indicates that 332

high expression noise is more detrimental in regulators than in regulated genes. Under neutrality, 333

absolute instrength had a significantly positive effect (linear mixed-effects model with coefficient β 334

= 8.3× 10−4, p-value < 2.2× 10−16, Fig 4C) and absolute outstrength did not have a significant 335

effect on the relative change in gene expression variance (linear mixed-effects model with coefficient 336

β = 7.1× 105, p-value = 0.26, Fig 4D). The mutual information was significant between the relative 337

change in gene expression variance under neutrality and absolute instrength (MI = 0.03, p-value 338

≤ 10−4, permutation test) and absolute outstrength (MI = 0.01, p-value ≤ 10−4, permutation 339

test). These effects are much smaller and of opposite direction than the ones measured in selective 340

conditions, indicating that genetic drift did not cause the effect of centrality measures on expression 341

variance observed in selected populations. 342

343
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Evolutionary change in genotypes: regulators are more likely to respond – and 344

display a stronger response – to selection 345

To investigate differential selective pressure acting on gene-specific expression noise, we analysed 346

the change of intrinsic noise parameters in populations of gene regulatory networks evolved with or 347

without stabilizing selection on the expression level. We measured the selective pressure acting on 348

individual genes as the average reduction in the intrinsic noise parameter relative to the beginning 349

of the evolutionary simulation (see Methods). The selective pressure on genes was found to be close 350

to 0 in neutrally evolving populations, as expected (Fig 5B). In the presence of selection, however, 351

the distribution of selective pressures was found to be bimodal (Fig 5A). Therefore, we binned genes 352

in two categories according to whether they responded to selection (selective pressure > 0.5) or not 353

(selective pressure ≤ 0.5). We then separately analysed the probability to respond to selection and 354

the strength of the response. 355

Absolute instrength had a significant and strongly negative effect (logistic regression with 356

coefficient β = -1.87, p-value < 2.2 × 10−16, Fig 5C) on the probability of a gene to respond to 357

selection, that is, genes with more and stronger incoming links are less likely to respond to selection. 358

Absolute outstrength also had a significant effect on the probability of a gene to respond to selection 359

(logistic regression with coefficient β = -0.08, p-value = 6.7× 10−7, Fig 5D). However, this effect was 360

small and was lost when the interaction terms between instrength and outstrength were included 361

in the model (SI). For a qualitative analysis of the effect of network centrality on the selective 362

pressure acting on individual genes, we fitted linear-mixed effects models on the set of genes that 363

responded to selection, with selective pressure as the response variable. In the genes that responded 364

to selection from the selected populations, absolute instrength had a significant negative effect 365

(linear mixed-effects model with coefficient β = -0.04, p-value < 2.2× 10−16, Fig 5E). Conversely, 366

absolute outstrength had a significant positive effect (linear mixed-effects model with coefficient 367

β = 0.03, p-value < 2.2 × 10−16, Fig 5F) on the selective pressure. In the selected populations, 368

the mutual information was significant between the selective pressure and absolute instrength (MI 369

= 0.19, p-value ≤ 10−4, permutation test) and absolute outstrength (MI = 0.31, p-value ≤ 10−4, 370

permutation test). 371

The increased selective pressure in genes with high outstrength (strong regulators) can be 372

explained by noise propagation to downstream elements. Namely, expression noise in regulators 373

propagates to the genes they regulate, increasing the overall expression noise in the gene regulatory 374

network. If gene expression levels in the network are under stabilizing selection, expression noise is 375

deleterious. Therefore, regulator genes experience a comparatively higher selective pressure to reduce 376

expression noise than regulated genes. In the neutral populations, neither absolute instrength nor 377

absolute outstrength had a significant effect (linear mixed-effects model with coefficient βinstrength = 378

2.4×10−8, p-value = 0.99, Fig 5G; βoutstrength = −1.2×10−5, p-value = 0.49, Fig 5H) on the selective 379

pressure. Similarly, the mutual information was not significant between the selective pressure and 380

absolute instrength (MI = 0.005, p-value = 0.34, permutation test), nor absolute outstrength (MI = 381

0.005, p-value = 0.45, permutation test). 382

In contrast to regulator genes, we found that regulated genes, i.e. genes with high node instrength, 383

are less likely to respond to selection and the selective pressure decreases with node instrength. Since 384

the expression noise of genes is a sum of their intrinsic noise and noise propagated from upstream 385

elements, the contribution of intrinsic noise to the total noise of the gene will be comparatively 386

smaller in strongly regulated genes. The network can thus respond to selection either by reducing the 387

intrinsic noise of the focal gene, or by reducing the intrinsic noise of any of the upstream elements, 388

which would reduce propagated noise. As a result, there is a relaxation of selective pressure in 389
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Fig 5. Differential selective pressure is acting on genes based on their centrality. A, B
- Distributions of the measured selective pressure in selected (A) and neutral (B) populations.
Genes with a selective pressure above 0.5 were categorized as responsive to selection. C, D - High
instrength genes are less likely to respond to selection. Absolute instrength (C) has a strongly
significant negative effect on the probability of selection response. Absolute outstrength (D) has a
weak significant negative effect on the probability of selection response. E, F - In the subset of
genes that responded to selection, high instrength (E) decreases the selective pressure, while high
instrength (F) increases the selective pressure acting on individual genes. The lines indicate the 25%
(lower dashed line), 50% (solid line), and 75% (upper dashed line) fitted quantiles. G, H - Absolute
instrength (G) and outstrength (H) have no significant effect on the selective pressure in the
non-selected populations. The dataset consists of 2,000 populations with unique 40-gene random
network topology samples, which were independently evolved 10 times under selection and 10 times
under neutrality. The selective pressure on each gene is calculated as the average normalized
reduction of the intrinsic noise parameter during the evolutionary simulation and summarized as the
mean over all replicates in each scenario. Coefficients, p-values and partial marginal R2 measures
are estimated using logistic regression and linear mixed-effects models with selection responsiveness
or selective pressure as the response variable, instrength and outstrength as fixed effect explanatory
variables, and the network topology sample as the random effect explanatory variable. Mutual
information (MI) p-values were using 10,000 permutations.
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regulated genes, which is distributed on upstream genes. On the other hand, the same mechanism 390

increases the selective pressure on upstream genes, i.e. regulators. 391

To check the robustness of our results, we performed the node-level network centrality analysis 392

on two additional datasets with different topology structures: scale-free (Barabási–Albert) and 393

small-world (Watts–Strogatz) topology models. We find consistent effects (direction and significance) 394

of local network centrality metrics on the selective pressure acting on gene-specific noise across 395

topology models, showing that our findings are robust to the topology model used (SI Section 4). 396

However, the effect size of network centrality metrics differed between the topology models, pointing 397

at an effect of the topology model on noise propagation and the evolution of gene-specific expression 398

noise, which we investigate in the next section. 399

Global network properties affect the evolvability of expression noise and selective 400

pressure on constituent genes 401

Lastly, we analysed how topological structures and graph-level network properties affect the expression 402

noise response of constituent genes to selection on a joint dataset of random (Erdős–Rényi), scale-free 403

(Barabási–Albert) and small-world (Watts–Strogatz) network topologies. Jointly analysing genes 404

from all three topology types with linear models, we observed statistically significant interactions 405

between instrength and outstrength and network topology types on both the probability to respond 406

to selection and the selective pressure acting on gene-specific expression noise (Table 1). We found 407

that genes in scale-free networks have a significantly higher probability of responding to selection 408

than genes in random networks. These results are in agreement with previous studies reporting 409

a higher evolvability of scale-free networks (31; 32). Conversely, genes in small-world networks 410

have a significantly lower probability of responding to selection than genes in random networks. 411

Furthermore, there are significant effects of interactions between instrength and outstrength with 412

the topology type on the selective pressure on constituent genes. 413

To investigate which global topological features of the three network models affect expression 414

noise evolution, we performed a principal component analysis (PCA) on 12 graph-level measures. 415

The first two dimensions of the PCA expressed 85.4% of the total dataset inertia (Fig S8A), so 416

we used the first two principal components (PCs) as synthetic explanatory variables in linear 417

mixed-effects models. The loading of the first synthetic variable (PC1) is dominated by negative 418

loadings of diameter and mean path distance, and the centralization measures, namely positive 419

loadings of outdegree and closeness centralization and negative loadings of indegree and betweenness 420

centralization. The diameter of a network is defined as the longest shortest path between any two 421

nodes. Centralization is a measure of the extent to which a network is centered around a single node 422

and can be computed from different centrality metrics. The loading of the second synthetic variable 423

(PC2) is dominated by the negative loading of the average degree, average indegree and average 424

outdegree measures (Fig S8B). For a more intuitive interpretation, the signs of both PCs have been 425

switched in the statistical analysis. Therefore, PC1 shown in the results is dominated by positive 426

loadings of diameter, mean path distance, indegree centralization and negative loadings of outdegree 427

centralization, and PC2 is dominated by positive loadings of average degree. We refer to PC1 and 428

PC2 as synthetic network diameter and centralization and synthetic average degree, respectively. 429

The average expression variance per network is significantly negatively affected by synthetic 430

network diameter and centralization (linear model with synthetic network diameter and centralization 431

coefficient β = -6.19, p-value < 2.2× 10−16) and significantly positively affected by the synthetic 432

average degree (linear model with synthetic average degree coefficient β = 13.26, p-value< 2.2×10−16). 433

The mutual information was significant between the average expression variance per network and 434
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synthetic network diameter and centralization (MI = 0.21, p-value ≤ 10−4, permutation test) and 435

synthetic average degree (MI = 0.21, p-value ≤ 10−4, permutation test). This finding means that 436

global network properties affect the amplification of noise through noise propagation between the 437

genes. Specifically, networks with a lower diameter, mean path distance, indegree centralization, 438

and higher outdegree centralization and average degree, had higher average gene expression variance. 439

In the selected populations, the average selective pressure per network was significantly negatively 440

affected by both synthetic network diameter and centralization and the synthetic average degree 441

(linear model with synthetic network diameter and centralization coefficient β = -0.003, p-value = 442

4.9× 10−11, Fig 6A; synthetic average degree coefficient β = -0.009, p-value < 2.2× 10−16, Fig 6B). 443

The mutual information was significant between the average selective pressure per network and 444

synthetic network diameter and centralization (MI = 0.27, p-value ≤ 10−4, permutation test) and 445

synthetic average degree (MI = 0.26, p-value ≤ 10−4, permutation test). This result shows that 446

the average selective pressure acting on gene-specific expression noise in networks decreases with 447

an increase of network diameter, mean path distance, indegree centralization and average degree 448

Table 1. Network topology type affects the probability of responding to selection and
selective pressure on gene-specific expression noise under stabilizing selection on gene
expression level.

Response Explanatory variable Beta SE p-value1

Probability of
responding to selection

Instrength -1.9270 0.0284 < 2.2× 10−16 ****
Outstrength -0.0829 0.0226 < 2.6× 10−4 ***
Scale-free (BA) topology2 0.9209 0.1075 < 2.2× 10−16 ****
Small-world (WS) topology3 -0.2684 0.0945 0.0045 **
Instrength:BA4 0.0120 0.0516 0.8159 n.s.
Instrength:WS 0.0006 0.0401 0.9873 n.s.
Outstrength:BA -0.2947 0.0252 < 2.2× 10−16 ****
Outstrength:WS -0.0728 0.0333 0.0287 *

Gene-specific selective
pressure

Instrength -0.0377 0.0004 < 2.2× 10−16 ****
Outstrength 0.0347 0.0003 < 2.2× 10−16 ****
Scale-free (BA) topology 0.0019 0.0012 0.1404 n.s.
Small-world (WS) topology 0.0222 0.0013 < 2.2× 10−16 ****
Instrength:BA 0.0143 0.0007 < 2.2× 10−16 ****
Instrength:WS -0.0055 0.0006 < 2.2× 10−16 ****
Outstrength:BA -0.0151 0.0003 < 2.2× 10−16 ****
Outstrength:WS -0.0075 0.0005 < 2.2× 10−16 ****

1 Coefficients and their significance were computed using linear mixed-effects models (see Methods).
The dataset consisted of 3,000 populations with unique 40-gene random, scale-free and small-world
network topology samples, which were independently evolved 10 times under selection and 10 times
under neutrality. The selective pressure on each gene was calculated as the average normalized
reduction of the intrinsic noise parameter during the evolutionary simulation and summarized as the
mean over all replicates in each scenario. Genes were termed responsive to selection if their selective
pressure was above 0.5. Asterisks indicate statistical significance: n.s. - p-value > 0.05; * - p-value
≤ 0.05; ** - p-value ≤ 0.01; *** - p-value ≤ 0.001; **** - p-value ≤ 0.0001.
2 Barabási–Albert network model.
3 Watts–Strogatz network model.
4 Colons (‘:’) indicate variable interactions.
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Fig 6. Global network properties affect the average selective pressure acting on gene
expression noise under stabilizing selection on gene expression level. A, B - Principal
component variables consisting of the diameter and network centralization (A) and average degree
(B) have a significant negative effect on the average selective pressure per network. The two
synthetic variables were constructed by performing a principal component analysis on 12 graph-level
network metrics. The lines indicate the 25% (lower dashed line), 50% (solid line), and 75% (upper
dashed line) fitted quantiles. The dataset consisted of 3,000 populations with unique 40-gene
random, scale-free and small-world network topology samples, which were independently evolved 10
times under selection and 10 times under neutrality. The selective pressure on each gene is
calculated as the average normalized reduction of the intrinsic noise parameter during the
evolutionary simulation and summarized over all replicates in each scenario. Coefficients and
p-values are estimated using a linear model with average selective pressure as the response variable,
and PC1 and PC2 as explanatory variables. Mutual information (MI) p-values were computed with
permutation test with 10,000 permutations.

per network. Conversely, the average selective pressure increases with an increase of outdegree 449

centralization (Fig 6A-B). In the populations evolved under neutrality, neither synthetic network 450

diameter and centralization, nor synthetic average degree, had a significant effect on the average 451

selective pressure per network (linear model with synthetic network diameter and centralization 452

coefficient β = −2.8 × 10−7, p-value = 0.95; synthetic average degree coefficient β = −1 × 10−7, 453

p-value = 0.99, Fig 6C-D). Similarly, the mutual information was insignificant between the average 454

selective pressure per network and synthetic network diameter and centralization (MI = 0.15, p-value 455

= 0.72, permutation test) and synthetic average degree (MI = 0.15, p-value = 0.59, permutation 456

test). 457

Discussion 458

To study the evolution of gene expression noise, we developed a new gene regulatory network model 459

that incorporates stochastic gene expression, where the gene expression mean and variance are both 460

heritable and, therefore, potentially subject to natural selection. We simulated the evolution of 461

gene-specific expression noise in populations of model gene regulatory networks under selective and 462

non-selective conditions. Under a stabilizing selection regime around optimal gene expression levels, 463

we observed the evolution of noise reduction. However, individual genes responded differently to 464

August 1, 2022 17/25

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502352
http://creativecommons.org/licenses/by-nd/4.0/


this global selective pressure. First, only some genes reduced their intrinsic noise, and were marked 465

as “responding to selection”. Second, these genes differed in the amount by which they reduced 466

their intrinsic noise. We unravelled the factors that determine both the probability to respond to 467

selection and the strength of the response using several complementary statistical approaches. We 468

used generalized linear models with mixed effects (GLMM), allowing us to jointly test multiple 469

putative factors. GLMMs, however, make several assumptions that might be violated by the data in 470

some cases. To further validate our conclusions, we computed the mutual information (MI) between 471

variables. The results of the MI analyses were consistent with those of the GLMM, demonstrating 472

the robustness of our conclusions. 473

We found that genes of high centrality exhibit a stronger selective pressure to reduce gene-specific 474

expression noise under stabilizing selection on the expression level and the genetic network structure 475

affects the propagation and evolvability of gene-specific expression noise. In the following, we further 476

discuss the implications of differential selective pressure acting on constituent genes in gene networks. 477

Differential selective pressure on genes in gene networks 478

We found that central genes in gene regulatory networks had a comparatively higher impact on the 479

network fitness and, therefore, gene expression noise in central genes was more detrimental than 480

in peripheral genes. Distinguishing between node input (summarized by the node instrength) and 481

output (summarized by the node outstrength) further allowed us to dissect the selective pressure 482

acting on individual genes. Regulator genes, i.e. genes with high node outstrength, were more likely 483

to respond and had a stronger response to selection than non-regulator genes. Regulator genes 484

have been experimentally shown to propagate their expression noise to downstream elements (14), 485

a property well captured by our model. This imposes a stronger selective pressure on them under 486

stabilizing selection on gene expression acting at the network-level. In a genome-wide expression 487

noise screen in Drosophila melanogaster, transcription factors were found to have lower expression 488

variation (33). Suppression of expression noise can be attained through negative autoregulation 489

(34; 35; 36), whereby a regulator acts as its own repressor. Incidentally, 40% of transcription factors in 490

E. coli (37) and many eukaryotic transcription factors (38) have negative autoregulation, indicating 491

a wide-spread control of expression noise in natural regulatory networks. 492

Mechanisms of intrinsic noise reduction 493

In this study we abstracted and summarized the many determinants of intrinsic expression noise into 494

a single parameter, which can be viewed as a modifier locus that can directly change the intrinsic 495

noise of a given gene. This simplification permitted us to investigate the evolution of expression 496

noise in gene networks with computationally feasible evolutionary simulations. In reality, multiple 497

factors that affect gene expression variance in biological systems have been reported. These include 498

epigenetic factors, such as chromatic dynamics (39) and presence of chromatin remodelling complexes 499

(40). Other factors affect transcription directly and can, therefore, control expression noise: the 500

promoter shape (33), presence of a TATA box (40), presence and number (4) of TF binding sites, 501

TF binding dynamics (41), presence of TF decoy binding sites (42), and transcription rate. Factors 502

affecting translation have also been shown to play a role in controlling noise: miRNA targetting 503

(43), mRNA lifetime, translation rate, and post-translational modifications such as the protein 504

degradation rate. Compartmentalization of proteins by phase separation has also been shown to 505

reduce noise (44). We have demonstrated the existence of a general selective pressure acting on gene 506

expression noise. Biological organisms may differ in the mechanisms used to respond to this selective 507
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pressure, calling for further, data-driven, investigations. 508

Global network structure impacts noise propagation and evolution 509

As instrength and outstrength are local centrality measures, we further assessed the impact of the 510

global network structure on noise evolution by conducting our analyses on three different network 511

topology models. While we found consistent qualitative results with the three models, there were 512

quantitative differences between the network models, which we assessed by measuring graph-level 513

characteristics. We found that network characteristics such as diameter, mean path distance, 514

centralization and average degree affect the propagation of noise within the regulatory network. 515

Given that there is a trade-off between the fitness advantage of reducing gene-specific expression 516

noise at the gene level and its mechanistic cost (for instance, in terms of mRNA processing (45)), 517

evolving the global network structure may offer an alternative way to reduce network-level noise. 518

Several motifs recurrently found in regulatory networks have an impact on expression noise, such 519

as negative (34; 35; 36) and positive autoregulation (38), feed-forward loops (38) and interlinked 520

feed-forward loops (46). 521

It is important, however, to distinguish two aspects when considering the effect of the network 522

structure on the expression dynamics of constituent genes: the network structure, i.e. the topology 523

of the graph, and the strength of each of the regulatory interactions, both of which impact expression 524

noise. The same network topology, but with different regulatory interactions strengths, can give 525

rise to markedly different network behaviours. In the gap gene system, for example, it was shown 526

that multiple subcircuits share the same regulatory structure, but yield different expression patterns 527

because of their differences in active components and strength of regulatory interactions (47). It 528

results that network models of gene expression noise must incorporate both graph topology and 529

interaction strength between all constituent genes. The Wagner model constitutes a simple framework 530

that fulfills these two conditions. However, it has its limitations. Namely, it is not fine-grained 531

enough to capture the complex dynamics of real regulatory networks. Models that incorporate higher 532

molecular detail, such as large systems of differential equations, are necessary to precisely capture in 533

fine detail the expression dynamics of a real biological network, but they come with a cost in terms 534

of high computation time (preventing their use in evolutionary simulations), low tractability and, 535

often, the inability to model noise. 536

Implications of selection on expression noise on the evolution of genomes and 537

gene regulatory networks 538

One mechanism by which networks and genomes evolve is gene duplication. Gene duplications are a 539

major source of new genes and thought to be a primary source of evolutionary novelties. It has been 540

long proposed that new functionality arises from duplicated genes by allowing the other gene copy 541

to acquire new functions (neofunctionalization) or improve existing functions (subfunctionalization) 542

by relaxing the selective pressure acting on a single gene through an additional redundant copy 543

(48). However, most of the time the redundant copy is lost before new functionality can arise (49), 544

either by genetic drift alone or because having the extra copy is deleterious. The redundant copy 545

has a chance to evolve a new function or improve an existing one while it is evolving neutrally or 546

reaches fixation in the population, or alternatively, if there is some fitness benefit of the additional 547

copy that increases its frequency in the population. Some benefits of having additional gene copies 548

have been shown, such as increased expression level for genes whose pre-duplication expression level 549

was far from the optimum (50). Moreover, duplicating a gene reduces its expression noise (51; 52), 550
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averaging the stochastic events over the two gene copies. The reduction of expression noise may, 551

therefore, constitute another benefit of a gene duplication, increasing its chance of fixation in the 552

population. As the gene number increases in bacterial genomes, the number of regulatory genes 553

increases 4-fold (53), indicating a gene duplication is more likely to stay if the gene is a regulatory 554

gene. We hypothesize that selection on expression noise, particularly on regulatory genes, could, 555

therefore, be one of the forces driving the maintenance of duplicated genes. 556

Applications of the model framework to study complex systems 557

In this study, we developed a new regulatory and evolutionary model to study expression noise in 558

gene regulatory networks. The model represents key features of evolving gene regulatory networks, 559

namely the non-independence of gene expression levels and fitness determined by the expression 560

level of many or all genes in the network. Our results revealed that differential selective pressure act 561

on intrinsic expression noise of constituent genes and that network-level topological properties affect 562

noise propagation within the network. 563

Although our study focused on gene regulatory networks, our conclusions potentially apply 564

to a broader range of systems. In particular, we posit that any system that fulfills two essential 565

properties will exhibit a similar behavior: (i) the amount of product of each system components 566

(here called “expression level”) are not independent and (ii) the performance (here termed “fitness”) 567

is determined by the product level of one or several of the components of the system. There are many 568

other complex systems that fulfill these criteria, such as biological metabolic networks, ecological 569

food webs, neural networks, economies, transportation and other infrastructure networks, and social 570

networks. We expect that the same constraints act on noise in elements of these systems, and that 571

some of the conclusions on gene regulatory networks could be carefully applied to other complex 572

systems. 573

Conclusion 574

By modeling the interactions of genes in a regulatory network, we showed that the selective pressure 575

acting on a system (gene network) resulted in differential pressures on individual components (genes). 576

With this, we demonstrated that the position of the gene in the network and global network structure 577

impact the evolution of intrinsic expression noise. Investigating how gene networks evolve to cope 578

with expression noise will reveal mechanisms of how complex biological systems adapt to function 579

with an inevitable molecular noise in their components. A better comprehension of these mechanisms 580

is a prerequisite to understand the evolution of complexity in biological systems, from the first 581

self-replicating RNA systems to modern eukaryotic cells expressing tens of thousands of genes. 582

Supporting information 583

All additional analyses and their results, used parameters, their descriptions and biological mean- 584

ing, and other information can be found as the supplementary PDF file. The source code 585

for the gene network model and evolutionary simulations is available at https://gitlab.gwdg. 586

de/molsysevol/supplementarydata_expressionnoise/cpp. The R Notebook files and other 587

scripts necessary to reproduce the complete analysis are available at https://gitlab.gwdg.de/ 588

molsysevol/supplementarydata_expressionnoise/scripts. The simulation data necessary to 589

reproduce all figures is available at https://zenodo.org/X. 590
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